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Eisenstein Series Second Part

In Chap. 5, we already saw the Epstein zeta function, actually two zeta func-
tions, one primitive and the other one completed by a Riemann zeta function.
Indeed, let Y ∈ Posn. We may form the two series

Epr(Y, s) =
∑

a prim

([a]Y )−s and E(Y, s) =
∑
a�=0

([a]Y )−s

where the first sum is taken over a ∈ tZn, a �= 0 and a primitive; while the
second sum is taken over all a ∈ tZn, a �= 0. Any a ∈ tZn can be written
uniquely in the form

a = da1 with d ∈ Z+ and a1 primitive .

Therefore
E(Y, s) = ζQ(2s)Epr(Y, s) .

We have to extend this property to the more general Selberg Eisenstein
series on Posn. This involves a more involved combinatorial formalism, about
integral matrices in Zj,j+1 with j = 1, . . . , n − 1. Thus the first section is
devoted to the linear algebra formalism of such integral matrices and their
decompositions. After that, we define the general Eisenstein series and ob-
tain various expressions for them which are used subsequently in deriving the
analytic continuation and functional equations. For all this, we will follow
Maass from [Maa 71] after [Maa 55], [Maa 56]. He did a great service to the
mathematical community in providing us with a careful and detailed account.
However, we have had to rethink through all the formulas because we use left
characters instead of right characters as in Maass-Selberg, and also we intro-
duce the Selberg variables s = (s1, . . . , sn) as late as possible. Indeed, we work
with more general functions than characters, for application to more general
types of Eisenstein series constructed with automorphic forms, or beyond with
the heat kernel.

We note here one important feature about the structure of various fudge
factors occurring in functional equations: they are eigenvalues of certain
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operators, specifically three operators: a regularizing invariant differential op-
erator, the gamma operator (convolution with the kernel of the gamma func-
tion on Posn), a Hecke-zeta operator. To bring out more clearly the structure
of these operators and their role, we separate the explicit computation of their
eigenvalues from the position these eigenvalues occupy as fudge factors. When
the eigenfunctions are characters, these eigenvalues are respectively polyno-
mials, products of ordinary gamma functions, and products of Riemann zeta
functions, with the appropriate complex variables. Such eigenvalues are those
occurring in the theory of the Selberg Eisenstein series, which are the most
basic ones. However, Eisenstein series like other invariants from spectral the-
ory (including analytic number theory) have an inductive “ladder” structure,
and on higher rungs of their ladder, the eigenvalues are of course more compli-
cated and require more elaborate explicit computations, which will be carried
out in their proper place. On the other hand, the general formulas given in
the present chapter will be applicable to these more general cases.

1 Integral Matrices and Their Chains

Throughout, we let:

Γn = GLn(Z);
M∗

n = set of integral n × n matrices of rank n;
M∗(p, q) = set of integral p × q matrices of rank min(p, q);
∆n = set of upper triangular integral n × n matrices of rank n;
Tn = Γn ∩ ∆n = group of upper triangular integral matrices of

determinant ± 1 .

We note that M∗
n and ∆n are just sets of matrices, not groups. The diag-

onal components of an element in ∆n are arbitrary integers �= 0, so elements
of ∆n are not necessarily unipotent. On the other hand, the elements of Tn

necessarily have ±1 on the diagonal, so differ from unipotent elements pre-
cisely by such diagonal elements. Note that ∆n is stable under the action
of Tn on both sides, but we shall usually consider the left action. Thus we
consider coset representatives in Γn for the coset space Tn\Γn and also coset
representatives D ∈ ∆n of the coset TnD, which is a subset of ∆n. Similarly,
M∗

n is stable under the action of Γn on both sides, and we can consider the
coset space Γn\M∗

n.

Lemma 1.1. The natural inclusion ∆n ↪→ M∗
n induces a bijection

Tn\∆n → Γn\M∗
n

of the coset spaces.
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Proof. By induction, and left to the reader. We shall work out formally a more
complicated variation below.

The bijection of Lemma 1.1 is called triangularization.
Next we determine a natural set of coset representatives for Tn\∆n.

Lemma 1.2. A system of coset representatives of Tn\∆n consists of the ma-
trices

D =

⎛
⎜⎝

d11 . . . d1n

...
. . .

...
0 . . . dnn

⎞
⎟⎠ = (dij)

satisfying dij = 0 if j < i (upper triangularity), djj > 0 all j, and

0 � dij < djj for 1 � i < j � n .

In other words, in a vertical column, the components are � 0 and strictly
smaller than the diagonal component in this column.

Proof. In the first place, multiplying an arbitrary element D ∈ ∆n by a diago-
nal matrix with ±1 diagonal components, we can make the diagonal elements
djj , (j = 1, . . . , n) to be positive. Then we want to determine a nilpotent inte-
gral matrix X (upper triangular, zero on the diagonal) such that (I + X)D is
among the prescribed representatives, and furthermore, such X is uniquely de-
termined. This amounts to the euclidean algorithm, and is done by induction,
starting with the top left. Pictorially, given an upper triangular integral ma-
trix with positive diagonal elements dii and strictly upper triangular elements
yij , we want to find X = (xij) such that the product

⎛
⎜⎜⎜⎜⎜⎝

1 x12 . . . x1n

0 1 . . . x2n

...
. . .

...
0 . . . 1 xn−1,n

0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

d11 y12 . . . y1n

0 d22 . . . y2n

...
. . .

...
0 0 . . . dn−1,n−1 yn−1,n

0 0 . . . 0 dnn

⎞
⎟⎟⎟⎟⎟⎠

satisfies the inequalities in the lemma. We start at the top, so we first solve
for x12 such that

0 � y12 + x12d22 < d22 .

This inequality has a unique integral solution x12. We then solve inductively
for x13, . . . , x1n; then we go down the rows to conclude the proof.

Lemma 1.3. Given integers djj > 0 (j = 1, . . . , n), the number of cosets
TnD with D having the given diagonal elements is

n∏
j=1

dj−1
jj .
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Proof. Immediate.

Remark. The previous lemmas have analogues for the right action of Γn on
M∗

n. First, Lemma 1.1 is valid without change for the right action of Γn on
M∗

n and the right action of Tn on ∆n. On the other hand, the inequalities
defining coset representatives in Lemma 1.2 for the right have to read:

0 � dij < dii for 1 � i < j � n .

Then the number of cosets DTn with D having given d11, . . . , dnn > 0 is

n∏
j=1

dn−j
jj .

Next we deal with M∗(n − 1, n) with n equal to a positive integer � 2.

Lemma 1.4. Let C ∈ M∗(n − 1, n). There exist γj ∈ Γj(j = n − 1, n) such
that

γn−1Cγ−1
n = (0,D) with D ∈ ∆n−1,

that is D is upper triangular.

Proof. The proof is a routine induction. Let n = 1. Let C ∈ M∗(1, 2), so
C = (b, c) is a pair of integers, one of which is �= 0. Let us write b = db1,
c = dc1 where (b1, c1) is primitive, i.e. b1, c1 are relatively prime, and d is a
non-zero integer. We can complete a first column t(−c1, b1) to an element of
SL2(Z) to complete the proof. The rest is done by induction, using blocks. A
more detailed argument will be given in a similar situation, namely the proof
of Lemma 1.6.

We consider the coset space Tn−1\M∗(n− 1, n). Given a coset Tn−1C, by
Lemma 1.4 we can find a coset representative of the form (0,D)γ with γ ∈ Γn.
We use such representatives to describe a fibration of Tn−1\M∗(n− 1, n) over
Tn\Γn as follows.

Lemma 1.5. Let π : Tn−1\M∗(n − 1, n) → Tn\Γn be the map which to each
coset Tn−1C with representative (0,D)γ associates the coset Tnγ. This map π
is a surjection on Tn\Γn, and the fibers are Tn−1\∆n−1.

Proof. Implicit in the statement of the lemma is that the association π as de-
scribed is well defined, i.e. independent of the chosen representative. Suppose

(0,D)γ = (0,D′)γ′ with D,D′ ∈ ∆n−1 .

Then (0,D) = (0,D′)γ′γ−1. Let τ = γ′γ−1 ∈ Γn. Then the above equa-
tion shows that actually τ is triangular, and so lies in Tn. This is done by
an inductive argument, letting τ = (tij) and starting with showing that
t21 = 0, . . . tn+1,n+1 = 0, and then proceeding inductively to the right with
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the second column, third column, etc. Thus γ, γ′ are in the same coset of
Tn\Γn, showing the map is well defined. We note that the surjectivity of π is
immediate.

As to the fibers, if τ ∈ Tn and D ∈ ∆n−1, then (0,D)τ again has the
form (0,D′) with D′ ∈ ∆n−1. Thus by definition, the fiber above a coset Tnγ
consists precisely of cosets

Tn−1(0,D) with D ∈ ∆n−1 ,

which proves the lemma.

In Lemma 1.5, we note that for each γ ∈ Γn we have a bijection

Tn−1\∆n−1 → fiber above Tnγ,

induced by the representative map D �→ (0,D)γ.
The arguments of Lemma 1.4 and 1.5 will be pushed further inductively.

The rest of this section follows the careful and elegant exposition in Maass
[Maa 71].

Since we operate with the discrete group Γ on the left, we have to reverse
the notation used in Selberg, Maass, and other authors, for example Langlands
[Lgl 76], Appendix 1. Let Y ∈ Posn. If Yj = Subj(Y ) is the lower right j × j
square submatrix of Y , then we can express Yj in the form

Yj = [(0, Ij)]Y = (0, Ij)Y
(

0
Ij

)
,(1)

where Ij is the unit j × j matrix as usual. Note the operation on the left,
and the fact that 0 denotes the j × (n − 1) zero matrix, so that (0, Ij) is a
j×n matrix. If Y = T tT with an upper triangular matrix T , then Yj = T t

j Tj ,
where Tj is the lower right j × j submatrix of T .

From a given Y we obtain a sequence (Yn, Yn−1, . . . , Y1) by the operation
indicated in (1), starting with Yn = Y . We call this sequence the Selberg
sequence of Y . Given γ ∈ Γn, we shall also form the Selberg sequence
with Yn = [γ]Y . In some sense (to be formalized below) this procedure gives
rise to “primitive” sequences. It will be necessary to deal with non-primitive
sequences, and thus we are led to make more general definitions as follows.

By an integral chain (more precisely n-chain) we mean a finite sequence

C = (γ,Cn−1, . . . , C1) with γ ∈ Γn and Cj ∈ M∗(j, j + 1)

for j = 1, . . . , n − 1. Let C be such a chain. Let C′ = (γ,C ′
n−1, . . . , C

′
1) be

another chain. We define C equivalent to C′ if either one of the following
conditions are satisfied.

EQU 1. There exist γj ∈ Γj (j = 1, . . . , n) such that

γ′ = γnγ and C ′
j = γjCjγ

−1
j+1 for j = 1, . . . , n − 1 .(2)
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EQU 2. There exist γj ∈ Γj (j = 1, . . . , n − 1) such that

C ′
j . . . C ′

n−1γ
′ = γjCj . . . Cn−1γ for j = 1, . . . , n − 1 .(3)

It’s obvious that (2) implies (3). Conversely, suppose EQU 2 and (3). We
then let γn = γ′γ−1, and it follows inductively that (2) is satisfied.

A sequence (γ,Cn−1, . . . , C1) will be said to be triangularized if we have
that Cj = (0,Dj) with Dj ∈ ∆j for j = 1, . . . , n− 1. Thus the first column of
Cj is zero.

The next lemmas give special representatives for equivalence classes.

Lemma 1.6. Let Cj ∈ Zj,j+1 (j = 1, . . . , n − 1) be integral matrices. There
exist elements γj ∈ Γj (j = 1, . . . , n) such that for j = 1, . . . , n − 1 we have

γjCjγ
−1
j+1 = (0, T1) =

⎛
⎜⎝

0 ∗ . . . ∗
...

...
. . .

...
0 0 . . . ∗

⎞
⎟⎠ ,

that is, the first column on the right is 0, and the rest is upper triangular, with
Tj ∈ Tri+j . Thus every chain is equivalent to a triangularized one.

Proof. Induction. For n = 2, the assertion is obvious, but we note how it
illustrates the proof in general. We just have C1 = (b, c) with numbers b, c.
We have γ1 = 1 and we write b = db1, c = dc1 with (b1, c1) relatively prime.
Then we can complete a first column t(−c1, b1) to an element of SL2(Z) to
complete the proof. Now by induction, suppose n � 3. There exist β2, . . . , βn

with βj ∈ Γj such that the first column of Cjβ
−1
j+1 is 0 for j = 1, . . . , n − 1.

Then βjCjβ
−1
j+1 also has first column equal to 0, and this also holds for j = 1.

Hence without loss of generality, we may assume that Cj has first column
equal to 0, that is

Cj =

⎛
⎜⎝

0 ∗ ∗ ∗
...
0 Hj−1

⎞
⎟⎠ with Hj−1 ∈ Zj−1,j .

By induction, there exists ηj−1 ∈ Γj−1 (j = 2, . . . , n) such that

ηj−1Hj−1η
−1
j =

⎛
⎜⎝

0 ∗ . . . ∗
...

...
. . .

...
0 0 . . . ∗

⎞
⎟⎠

where the matrix on the right has first column 0, and the rest upper triangular.
We let

γj =

⎛
⎝

1 0

0 ηj−1

⎞
⎠ for j = 1, . . . , n .
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Then γj ∈ Γj and matrix multiplication shows that

γjCjγ
−1
j+1 =

⎛
⎝

1 0

0 ηj−1

⎞
⎠

⎛
⎝

0 ∗

0 Hj−1

⎞
⎠

⎛
⎝

1 0

0 η−1
j

⎞
⎠

=

⎛
⎜⎝

0 ∗
...
0 ηj−1Hj−1η

−1
j

⎞
⎟⎠ .

This last matrix has the desired form (0, Tj), thereby concluding the proof.

The next lemma will give a refinement by prescribing representatives even
further.

Lemma 1.7. For each coset of Tn\Γn, Tn−1\∆n−1, . . . , T1\∆1 fix a coset rep-
resentative. To each sequence

(γ,Dn−1, . . . , D1)

whose components are among the fixed representatives, associate the chain

(γ, (0,Dn−1), . . . , (0,D1)) .

Then this association gives a bijection from the set of representative sequences
to equivalence classes of chains, i.e. every chain is equivalent to exactly one
formed as above, with the fixed representatives.

Proof. By Lemma 1.6, every equivalence class has a representative

(γ′, (0,D′
n−1), . . . , (0,D′

1))

with γ′ ∈ Γn and D′
j ∈ ∆j for j = n − 1, . . . , 1. There is one element τn ∈ Tn

such that τnγ′ is the fixed representative of the coset Tnγ′. Then we select the
unique τn−1 such that if we put

(0,Dn−1) = τn−1(0,D′
n−1)τ

−1
n

then Dn−1 is the fixed representative of the coset Tn−1Dn−1. We can then
continue by induction. This shows that the stated association maps bijectively
on the families of equivalence classes and proves the lemma.

A chain (γ,Cn−1, . . . , C1) is called primitive if all the matrices Cj , with
j = 1, . . . , n − 1, are primitive, that is, Cj can be completed to an ele-
ment of Γj+1 by an additional row. The property of being primitive de-
pends only on the equivalence class of the chain, namely if this property
holds for C then it holds for every chain equivalent to C. Furthermore, if
(γ, (0,Dn−1), . . . , (0,D1)) is a triangularized representative of an equivalence
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class, then it is primitive if and only if each Dj ∈ Γj . In the primitive case,
we can choose the fixed coset representatives of Tj\Γj (j = 1, . . . , n−1) to be
the unit matrices Ij . The primitive chains of the form

(γ, (0, In−1), . . . , (0, I1)) with γ ∈ Tn\Γn

will be called normalized primitive chains. Alternatively, one can select
a fixed set of representatives {γ} for Tn\Γn, and the primitive chains formed
with such γ are in bijection with the equivalence classes of all primitive chains.
Formally, we state the result:

Lemma 1.8. The map γ �→ chains of (γ, (0, In−1), . . . , (0, I1)) induces a bi-
jection

Tn\Γn → primitive equivalence classes of chains .

2 The ζQ Fudge Factor

It will be convenient to put out of the way certain straightforward computa-
tions giving rise to the fudge factor involving the Riemann zeta function, so
here goes. For a positive integer j we shall use the representatives of Tj\∆j

from Lemma 1.2. We let n � 2.
Let {z1, z2, . . .} be a sequence of complex variables. Let m � n. On Posm

we define the Selberg power function q
(n)
z by the formula

q(n)
z (S) =

n∏
j=1

|Subj(S)|zj with S ∈ Posm .

In particular, we may work with q
(n−1)
z on Posn, or also with q

(n)
z on Posn,

depending on circumstances. In any case, we see that we may also write

q(n)
z = dzn

n . . .dz1
1 ,

where dj is the partial determinant character, namely

dj(S) = |Subj(S)| .

In the next lemma, we consider both interpretations of qz. We shall look
at values

q(n)
z ([(0,D)]S)

where D ∈ ∆n is triangular, and S ∈ Posm. We note that this value is
independent of the coset TnD of D with respect to the triangular matrices
with ±1 on the diagonal. We shall sum over such cosets. More precisely, let ϕ
be a Tn-invariant function on Posn. Under conditions of absolute convergence,
we define the Hecke-zeta operator on Posm by the formula
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HZn(ϕ) =
∑

D∈Tn\∆n

ϕ ◦ [(0,D)],

that is for S ∈ Posm,

HZn(ϕ)(S) =
∑

D∈Tn\∆n

ϕ([(0,D)]S) .

We consider what is essentially an eigenfunction condition:
EF HZ. There exists λHZ(ϕ) such that for all S ∈ Posm we have

HZn(ϕ)(S) = λHZ(ϕ)ϕ(SubnS) .

Implicit in this definition is the assumption that the series involved converges
absolutely. The next lemma gives a first example.

For any positive integer n, we make the general definition of the Riemann
zeta fudge factor at level n,

ΦQ,n(z) =
n∏

i=1

ζQ(2(zi + . . . + zn) − (n − i)) .

Lemma 2.1. Let S ∈ Posm. Then
∑

D∈Tn\∆n

q
(n)
−z ([(0,D)]S) = ΦQ,n(z)q(n)

−z (S) .

In other words,
λHZ(q(n)

−z ) = ΦQ,n(z) .

This relationship holds for Re(zi + . . .+zn) > (n− i+1)/2, i = 1, . . . , n, which
is the domain of absolute convergence of the Hecke-zeta operator on q

(n)
−z .

Proof. Directly from the definition of q
(n)
−z , we find

q
(n)
−z ([(0,D)]S) =

n∏
i=1

|[(0, Ii)(0,D)]S)|−zi(1)

=
n∏

i=1

|Subi(D)|−2zi |Subi(S)|−zi

=
n∏

i=1

(dn−i+1 · · · dn)−2ziq
(n)
−z (S) ,

where d1, . . . , dn are the diagonal elements of D. Next we take the sum over all
integral non-singular triangular D, from the set of representatives of Lemma
1.2, so
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D =

⎛
⎜⎝

d1 . . . ∗
...

. . .
...

0 . . . dn

⎞
⎟⎠ .

The sum over D can be replaced by a sum

∞∑
d1,...,dn=1

n∏
k=1

dk−1
k

by Lemma 1.3. With the substitution k = n − i + 1, the factor of q
(n)
−z (S) in

(1) can thus be expressed as

∑
D

n∏
i=1

(dn−i+1 . . . dn)−2zi

=
∞∑

d1=1

. . .

∞∑
dn=1

n∏
k=1

d
−2(zn−k+1+...+zn)+k−1
k(2)

= ΦQ,n(z)

after reverting to indexing by i instead of n − k + 1. This proves the lemma.

Next we deal with a similar but more involved situation, for which we
make a general definition of the Riemann zeta fudge factors, namely

ΦQ,j(z) = ΦQ,j(z1, . . . , zj) =
j∏

i=1

ζQ(2(zi + . . . + zj) + j − i)

and

Φ(n)
Q (z1, . . . , zn) =

n∏
j=1

ΦQ,j(z) .

These products will occur as factors in relations among Eisenstein series later.
In the next lemma, we let {Dj} range over the representatives of Tj\∆j (j =
1, . . . n) as given in Lemma 1.2. We let d

(j)
νν denote the diagonal elements of

Dj , with the indexing j − k + 1 � ν � j, which will fit the indexing in
the literature. The indexing also fits our viewing Dj as a lower right square
submatrix.

Lemma 2.3.

∑
Dn

. . .
∑
D1

n∏
k=1

n∏
j=k

j∏
ν=j−k+1

(d(j)
νν )−2zk = Φ(n)

Q (z)

=
∏

1�i�j�n

ζQ(2(zi + . . . + zj) + j − i) .



3 Eisenstein Series 143

Proof. For a fixed index j, we consider the sum on the left over the represen-
tatives {Dj}. The products inside the sum which are indexed by this value j
then can be written

∑
Dj

j∏
k=1

j∏
ν=j−k+1

(d(j)
νν )−2zk .

This is precisely the term evaluated in (2), and seen to be equal to ZQ,j(z).
Taking the product over j = 1, . . . , n concludes the proof of the lemma.

3 Eisenstein Series

Next we shall apply chains as in Sect. 1 to elements of Posn. Let Y ∈ Posn.
Let C be a chain, C = (γ,Cn−1, . . . , C1). For each j = 1, . . . , n − 1 define

Cj(Y ) = [Cj · · ·Cn−1γ]Y, Cn(Y ) = [γ](Y ) .

Thus Cj(Y ) = [Cj ]Cj+1(Y ) for j = 1, . . . , n − 1.
Let z1, . . . , zn−1 be n−1 complex variables. We define the Selberg power

function q
(n−1)
C = qC (depending on the chain) by the formula

q
(n−1)
C,z (Y ) = |Cn−1(Y )|zn−1 . . . |C1(Y )|z1 .

One may also define q
(n)
C with one more variable, namely

q
(n)
C,z(Y ) =

n∏
j=1

|Cj(Y )|zj .

Let C be equivalent to C′. Then by (2) or (3) of Sect. 1 we have

C′
j(Y ) = [γj ]Cj(Y )

with γj having determinant ±1, so |C′
j(Y )| = |Cj(Y )|. It follows that

q
(n−1)
C′,z (Y ) = q

(n−1)
C,z (Y ) ;

in other words, q
(n−1)
C,z depends only on the equivalent class of C. Hence

the power function can be determined by using the representatives given by
Lemma 1.7.

As in Sect. 1, we let Tn be the group of integral upper triangular n × n
matrices with ±1 on the diagonal. We define the Selberg Eisenstein series

E
(n−1)
T ,n (Y, z) =

∑
C

q
(n−1)
C,−z (Y ) ,
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where the sum is taken over all equivalence classes of chains. We define the
primitive Selberg Eisenstein series by the same sum taken only over the
primitive equivalence classes, that is

E
pr(n−1)
T ,n (Y, z) =

∑
C primitive

q
(n−1)
C,−z (Y ) .

Furthermore, from Lemma 1.8, we know that a complete system of represen-
tatives for equivalence classes of primitive chains is given by

(γ, (0, In−1), . . . , (0, I1)) with γ ∈ Tn\Γn .

If C has the representative starting with γ, then we may write

qC,z(Y ) = qz([γ]Y ) .

We may thus write the primitive Eisenstein series in the form

E
pr(n−1)
T ,n (Y, z) =

∑
γ∈Tn\Γn

q
(n−1)
−z ([γ]Y ) .(1)

This is essentially the Eisenstein series we have defined previously, except that
we are summing mod Tn instead of mod ΓU . However, we note that for any
character ρ, and τ ∈ Tn we have the invariance property

ρ([τ ]Y ) = ρ(Y ) for all Y ∈ Posn .

Since (Tn : ΓU ) = 2n, denoting the old Eisenstein series by Epr
U (Y, q−z), we

get

Epr
U (Y, z) = 2nEpr

T (Y, z) .(2)

We recall explicitly that

Epr
U (Y, ρ) = TrΓU\Γ(ρ)(Y ) =

∑
γ∈ΓU\Γ

ρ([γ]Y ) .

To make easier the formal manipulations with non-primitive series, we list
some relations. For given k = 1, . . . , n − 1 we consider the product

(0,Dk) . . . (0,Dn−1) = (0k,n−k, Tk)

where (γ,Dn−1, . . . , D1) is a chain equivalent to C and Dj ∈ ∆j . Thus Tk is
a triangular k × k matrix. To determine more explicitly the Eisenstein series,
we may assume without loss of generality that

C = (γ, (0,Dn−1), . . . , (0,D1)) .

Then
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Ck(Y ) = [(0, Tk)γ]Y = [Tk][(0, Ik)γ]Y(3)

and therefore

|Ck(Y )| = |Tk|2|Subk([γ]Y )| .(4)

Let t
(k)
νν denote the diagonal elements of Tk. Then of course

|Tk|2 =
k∏

ν=1

(t(k)
νν )2 .(5)

These products decomposition allow us to give a product expression for E in
terms of Epr and the Riemann zeta function via the formula

q
(n−1)
C,−z (Y ) =

n−1∏
k=1

|Ck(Y )|−zk(6)

=
n−1∏
k=1

|([γ]Y )k|−zk

n−1∏
j=k

j∏
ν=j−k+1

(d(j)
νν )−2zk ,

here d
(j)
νν are the diagonal elements of Dj .

Theorem 3.1. The Eisenstein series E
(n−1)
U,n (Y, z) converges absolutely for

Re(zj) > 1 (j = 1, . . . , n − 1) and satisfies the relation

E
(n−1)
U,n (Y, z) = Φ(n−1)

Q (z1, . . . , zn−1)E
pr(n−1)
U (Y, z) .

Proof. Both the relation and the convergence follow from (6) and Lemma 2.3
applied to n − 1 instead of n, and Theorem 2.2 of Chap. 7.

Next, we have identities concerning the behavior of the Eisenstein series
under the star involution. Recall that for any function ϕ on Posn, we define

ϕ∗(Y ) = ϕ([ω]Y −1) = ϕ(ωY −1ω) .

Proposition 3.2. Let ϕ be any U -invariant function such that its ΓU\Γ-trace
converges absolutely. Then

(TrΓU\Γϕ)(Y −1) = (TrΓU\Γ(ϕ∗)(Y ) .

In particular, if ρ is a left character, then

Epr
U (Y −1, ρ) = Epr

U (Y, ρ∗) .

If {γ} is a family of coset representatives of ΓU\Γ, then {ω tγ−1} is also such
a family. Similarly for representatives of T \Γ.
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Proof. As to the second statement, write Γ =
⋃

ΓUγ. Let ΓŪ be the lower
triangular subgroup. Then

Γ =
⋃
γ

tγΓŪ =
⋃

ΓŪ
tγ−1 (taking the inverse)

=
⋃

ωΓŪωω tγ−1 (because Γ = ωΓ and ω2 = I)

=
⋃

ΓUωtγ−1 (because ωΓŪω = ΓU ) .

This proves the second statement. Then the first formula comes out, namely:

TrΓU\Γϕ(Y −1) =
∑

γ∈ΓU\Γ
ϕ([γ]Y −1)

=
∑

γ

ϕ(γY −1 tγ)

=
∑

γ

ϕ∗(ω(tγ−1Y γ−1)ω)

= TrΓU\Γϕ∗(Y )

by the preceding result, thus proving the proposition.

The next two lemmas deal with similar identities with sums taken over
cosets of matrices modulo the triangular group.

Lemma 3.3. Let ϕ be a Tn-invariant function such that the following sums
are absolutely convergent, i.e. a left character on Posn. Let S ∈ Posn+1. Then

∑
A∈M∗(n+1,n)/Tn

ϕ∗((S[A])−1) =
∑

C∈Tn\M∗(n,n+1)

ϕ([C]S) .

Proof. Inserting an ω inside the left side and using the definition of ϕ∗, to-
gether with ϕ∗∗ = ϕ, we see that the left side is equal to

∑
A∈M∗(n+1,n)/Tn

ϕ(S[A][ω]) =
∑
A

ϕ(S[Aω]) .

By definition, M∗(n + 1, n) =
⋃
A

ATn, with a family {A} of coset representa-

tives. Since M∗(n + 1, n) = M∗(n + 1, n)ω, we also have
⋃
A

ATn =
⋃

AωωTnω =
⋃
Aω

AωT −
n

where T −
n is the lower integral triangular group. Thus the family {Aω} is a

family of coset representatives for M∗(n + 1, n)/T −
n . Writing

S[Aω] = [ωtA]S,
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we see that we can sum over the transposed matrices, and thus that the desired
sum is equal to ∑

C∈Tn\M∗(n,n+1)

ϕ([C]S) ,

which proves the lemma.

Instead of taking M∗(n + 1, n)/Tn we could also take M∗(n + 1, n)/ΓU .
Since Tn/ΓU has order 2n, we see that we have a relation similar to (2), namely

∑
ΓU\M∗(n,n+1)

ϕ∗([C]S) = 2n
∑

Tn\M∗(n,n+1)

ϕ∗([C]S) .(7)

Normalizing the series by taking sums modTn or mod ΓU only introduces the
simple factor 2n each time.

We shall now develop further the series on the right in Lemma 3.3, by
using the eigenvalue property EF HZ stated in Sect. 2.

Lemma 3.4. Suppose that ϕ is TnU -invariant on Posn, and satisfies condi-
tion EF HZ (eigenfunction of Hecke-zeta operator). Then on Posn+1,

∑
C∈Tn\M∗(n,n+1)

ϕ ◦ [C] = λHZ(ϕ)TrTn+1\Γn+1(ϕ ◦ Subn) .

Proof. By the invariance assumption on ϕ, we can use the fibration of Lemma
1.5, and write the sum on the left evaluated at S ∈ Posn+1 as

∑
γ∈Tn+1\Γn+1

∑
D∈Tn\∆n

ϕ([(0,D)][γ]S) .

Then the inner sum is just the Hecke operator of ϕ, when evaluated at
Subn[γ]S. The result then falls out.

In particular, we may apply the lemma to the case when ϕ = q
(n)
−z , and we

obtain:

Corollary 3.5. Let S ∈ Posn+1. Then
∑

C∈Tn\M∗(n,n+1)

q
(n)
−z ([C]S) = ΦQ,n(z)Epr(n)

T ,n+1(S, q
(n)
−z ) .

Proof. Special case of Lemma 3.4, after applying Lemma 2.1 which determines
the eigenvalue of the Hecke-zeta operator.
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4 Adjointness and the ΓU\Γ-trace

We shall use differential operators introduced in Chap. 6. First, we observe
that for c > 0, Y ∈ Posn, B ∈ Symn we have by direct computation

∣∣∣∣
∂

∂Y

∣∣∣∣ e−ctr(BY ) = (−c)n |B| e−ctr(BY ) .(1)

In particular, the above expression vanishes if B is singular. In the applica-
tions, B will be semipositive, and the effect of applying |∂/∂Y | will therefore
be to eliminate such a term when B has rank < n.

As in Chap. 6 let the (first and second) regularizing invariant differ-
ential operators be

Q = Qn = |Y |
∣∣∣∣

∂

∂Y

∣∣∣∣ and D = Dn = |Y |−kQ̃n|Y |−kQn .(2)

Throughout we put k = (n + 1)/2 and D = Dn if we don’t need to mention
n. We recall that

D̃n = |Y |kDn|Y |−k = Q̃|Y |kQ|Y |−k .(3)

For S ∈ Posn+1 we let

θ(S, Y ) =
∑
A

e−πtr(S[A]Y )

where the sum is taken over A ∈ Zn+1,n. This is the standard theta series. We
can differentiate term by term. By (1) and the subsequent remark, we note
that

DY θ(S, Y ) =
∑

rk(A)=n

DY e−π(S[A]Y ) =
∑

rk(A)=n

βA,S(Y )e−πtr(S[A]Y ) ,

where βA,S (S being now fixed) is a function of Y with only polynomial
growth, and so not affecting the convergence of the series. Although its coef-
ficients are complicated, there is one simplifying effect to having applied the
differential operator D, namely we sum only over the matrices A of rank n.
Thus we abbreviate as before, and for this section, we let:

M∗ = M∗(n+1,n) = subset of elements in Z(n+1)×n of rank n .

Then the sum expressing DY θ(S, Y ) is taken over A ∈ M∗.
Note that both θ and Dθ are functions of two variables, and thus will be

viewed as kernels, which induce integral operators by convolution, provided
they are applied to functions for which the convolution integral is absolutely
convergent.



4 Adjointness and the ΓU\Γ-trace 149

We recall the functional equation for θ,

θ(S−1, Y −1) = |S|n/2|Y |(n+1)/2θ(S, Y ) .(4)

From (3), we then see that Dθ satisfies the same functional equation, that is

(Dθ)(S−1, Y −1) = |S|n/2|Y |(n+1)/2(Dθ)(S, Y ) .(5)

Here we have used the special value k = (n + 1)/2.
We shall now derive an adjoint relation in the present context. For a U -

invariant function ϕ on Posn, we recall the ΓU\Γ-trace, defined by

TrΓU\Γ(ϕ)(Y ) =
∑

γ∈ΓU\Γ
ϕ([γ]Y ) .

For functions ϕ such that the ΓU\Γ-trace and the following integral are ab-
solutely convergent, we can form the convolution on Γn\Posn:

(Dθ ∗ TrΓU\Γϕ)(S) =
∫

Γn\Posn

(DY θ)(S, Y )TrΓU\Γ(ϕ)(Y )dµn(Y ) .

We abbreviate as before

P = Posn, Γ = Γn

to make certain computations formally clearer.

Lemma 4.1. For an arbitrary U -invariant function ϕ on Posn insuring ab-
solute convergence of the series and integral, we have with k = (n + 1)/2:

(Dθ ∗ TrΓU\Γϕ)(S)

=
∑

A∈M∗/ΓU

2(−1)n|πS[A]|
∫

P

e−πtr(S[A]Y )|Y |k+1Q(ϕd−k)(Y )dµ(Y ) .

Thus the convolution on the left is a sum of gamma transforms.

Proof. The proof is similar to those encountered before. We have:
∫

Γ\P

(Dyθ)(S, Y )TrΓU\Γϕ(Y )dµ(Y )

=
∫

Γ\P

∑
A∈M∗

DY e−πtr(S[A]Y )TrΓU\Γϕ(Y )dµ(Y )

=
∑

A∈M∗/Γ

∫

Γ\P

∑
γ∈Γ

DY e−πtr(S[Aγ]Y )TrΓU\Γϕ(Y )dµ(Y )
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=
∑

A∈M∗/Γ

2
∫

P

DY e−πtr(S[A]Y )
∑

γ∈ΓU\Γ
ϕ([γ]Y )dµ(Y )

=
∑

A∈M∗/Γ

∑
γ∈ΓU\Γ

2
∫

P

|Y |−kQ̃Y (|Y |k+1

∣∣∣∣
∂

∂Y

∣∣∣∣ e−πtr(S[A]Y ))ϕ([γ](Y ))dµ(Y )

=
∑

A∈M∗/Γ

∑
γ∈ΓU\Γ

2(−1)n|πS[A]|
∫

P

e−πtr(S[A]Y )|Y |k+1QY (|Y |−kϕ([γ]Y ))dµ(Y ) ,

using formula (2), and then transposing Q̃Y from the exponential term to the
ϕ ◦ [γ](Y ) term. Now we make the translation Y �→ [γ−1]Y in the integral
over P. Under this change, ΓU\Γ �→ Γ/ΓU , and the expression is equal to

=
n∑

A∈M∗/Γ

∑
γ−1∈Γ/ΓU

2(−1)n|πS[A]|

∫

P

e−πtr(S[Aγ−1]Y )|Y |k+1QY (|Y |−kϕ(Y ))dµ(Y ) .

The two sums over Γ/ΓU and over M∗/Γ can be combined into a single sum
with A ∈ M∗/ΓU , which yields the formula proving the lemma.

Looking at the integral expression on the right in the lemma, we see at
once that it is a gamma transform. Furthermore, if ϕd−k is an eigenfunction of
Qn, then the integral can be further simplified, and this condition is satisfied
in the case of immediate interest when ϕ is a character. However, it continues
to be clearer to extract precisely what is being used of a more general function
ϕ, which amounts to eigenfunction properties in addition to TnU -invariance
and the absolute convergence of the series and integral involved. Thus we list
these properties as follows.

EF Q. The function ϕd−(n+1)/2 is an eigenfunction of Qn.
EF Γ. The function ϕd is an eigenfunction of the gamma transform, it

being assumed that the integral defining this transform converges
absolutely.

We use λ to denote eigenvalues. Specifically, let D be an invariant differ-
ential operator. Let ϕ be a D-eigenfunction. We let λD(ϕ) be the eigenvalue
so that

Dϕ = λD(ϕ)ϕ .
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Similarly, we have the integral gamma operator, and for an eigenfunction ϕ,
we let

λΓ(ϕ) = Γn(ϕ) so that Γ#ϕ = λΓ(ϕ)ϕ .

In addition, we define

Λn(ϕ) = (−1)nλQ(ϕd−(n+1)/2)λΓ(ϕd) .

Theorem 4.2. Assume that ϕ is TnU -invariant and satisfies the two prop-
erties EF Q and EF Γ. Then for S ∈ Posn+1, under conditions of absolute
convergence,

(Dθ ∗ TrΓU\Γ(ϕ)(S) = 2Λn(ϕ)
∑

A∈M∗(n+1,n)/ΓU

ϕ((πS[A])−1) .

Proof. By using the eigenfunction assumptions on the expression being
summed on the right side of the equality in Lemma 4.1, and again if we
set k = (n + 1)/2, we obtain:

|πS[A]|
∫

P

e−πtr(S[A]Y )|Y |k+1λQ(ϕd−k)(ϕd−k)(Y )dµ(Y )

= λQ(ϕd−k)|πS[A]|
∫

P

e−πtr(S[A]Y )(ϕd)(Y )dµ(Y )

= λQ(ϕd−k)|πS[A]|λΓ(ϕd)(ϕd)((πS[A])−1)

by definition of the gamma transform and an eigenvalue, cf. Chap. 3, Propo-
sition 2.2,

= λQ(ϕd−k)λΓ(ϕd)ϕ((πS[A])−1)

because the determinant cancels. This proves the theorem.

Theorem 4.3. Let ϕ be TnU -invariant, satisfying EF Q, EF Γ, and EF HZ.
Then for S ∈ Posn+1, when the series and integral are absolutely convergent,

(Dθ ∗ TrΓU\Γ(ϕ∗)(S) = Λn(ϕ∗)λHZ(ϕ)TrΓUn+1\Γn+1(ϕ ◦ Subn)(πS) .

Proof. We apply Theorem 4.2 to ϕ∗ instead of ϕ. The sum in Theorem 4.2
can be further simplified as follows:

∑
A∈M∗(n+1,n)/ΓU

ϕ∗((πS[A])−1)

= 2n
∑

A∈M∗(n+1,n)/Tn

ϕ∗((πS[A])−1)

= 2nλHZ(ϕ)Epr
T (πS, ϕ ◦ Subn) by Lemmas 3.3 and 3.4.

The Eisenstein series here is on Posn+1, and going back to ΓUn+1 instead of
Tn+1 introduces the factor 1/2n+1, which multiplied by 2n leaves 1/2. This
1/2 cancels the factor 2 occurring in Theorem 4.2. The relationship asserted
in the theorem then falls out, thus concluding the proof.
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Corollary 4.4. Let D = Dn be the invariant differential operator defined at
the beginning of the section. Let ϕ be homogeneous of degree w, for instance
ϕ is a character. Then for S ∈ Posn+1,

(Dθ ∗ TrΓU\Γn
ϕ∗)(S) = πwΛn(ϕ∗)λHZ(ϕ)TrΓUn+1\Γn+1(ϕ ◦ Subn)(S) .

Proof. We just pull out the homogeneity factor from inside the expression in
Theorem 4.3.

Remark. Remark Immediately from the definitions, one sees that for the
Selberg power character, we have

deg q(n)
z = wn(z) =

n∑
j=1

jzj .

This character may be viewed as a character on Posm for any m � n. The
degree is the same in all cases. For application to the Eisenstein series, we
use of course q

(n)
−z , which has degree −wn(z) = wn(−z). Actually, in the next

section we shall change variables, and get another expression for the degree
in terms of the new variables.

The inductive formula of this section stems from the ideas presented by
Maass [Maa 71], pp. 268–272, but we have seen how it is valid for much
more general functions ϕ besides characters. Maass works only with the spe-
cial characters coming from the Selberg power function, and normalizes these
characters with s-variables. We carry out this normalization in the next sec-
tion, as a preliminary to Maass’ proof of the functional equation.

5 Changing to the (s1, . . . , sn)-variables

We recall the Selberg power function of Chap. 3, Sect. 1, expressed in terms
of two sets of complex variables

z = (z1, . . . , zn−1) and s = (s1, . . . , sn) ,

namely

|Y |sn+(n−1)/4q
(n−1)
−z (Y ) = hs(Y ) =

n∏
i=1

(tn−i+1)2si+i−(n+1)/2 ,(1)

where
zj = sj+1 − sj +

1
2

for j = 1, . . . , n − 1,

or also

q
(n−1)
−z (Y ) = |Y |−sn−(n−1)/4hs(Y ) .(2)
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To determine the degree of homogeneity of hs, we note that

Y �→ cY (c > 0) corresponds to t �→ c1/2t .

Then we find immediately:

deg hs =
n∑

i=1

si and deg h∗
s = −deg hs .(3)

Throughout this section, we fix the notation. We let Γ = Γn, and

ζpr(Y, s) = Epr
U (Y, q

(n−1)
−z ) = TrΓU\Γq

(n−1)
−z (Y )

= |Y |−sn−(n−1)/4 TrΓU\Γhs(Y ) .

Proposition 5.1. We have in the appropriate domain (see the remark be-
low):

ζpr(Y −1, s) = |Y |sn−s1+(n−1)/2ζpr(Y, s∗) ,

where s∗ = (−sn, . . . ,−s1), so s∗j = −sn−j+1.

Proof. We have

ζpr(Y −1, s) = |Y |sn+(n−1)/4TrΓU\Γhs(Y −1) by (2)

= |Y |sn+(n−1)/4TrΓU\Γh∗
s(Y ) by Prop. 3.2

= |Y |sn+(n−1)/4TrΓU\Γhs∗(Y ) by Chap. 3, Prop. 1.7

= |Y |sn−s1+(n−1)/2ζpr(Y, s∗) by (2)

because TrΓU\Γhs∗(Y ) = |Y |s∗
n+(n−1)/4ζpr(Y, s∗) by (2). This concludes the

proof.

Remark. The domain of absolute convergence of the Eisenstein series
Epr

U (Y, q
(n−1)
−z ) was proved to be Re(zj) > 1 for j = 1, . . . , n − 1, that is

Re
(

sj+1 − sj +
1
2

)
> 1 for j = 1, . . . , n − 1 .

From the relation s∗k = −sn−k+1 we see that

s∗k+1 − s∗k +
1
2

= sj − sj−1 +
1
2

with j = n − k + 1 .

Thus the domains of convergence in terms of the s∗ and s variables are “the
same” half planes.

We shall meet a systematic pattern as follows. Let ψ = ψ(u) be a function
of one variable. For n � 2, we define
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ψn(s) = ψn(s1, . . . , sn) =
n−1∏
i=1

ψ(sn − si + 1/2)

ψ(n)(s) =
n∏

j=2

ψj(s1, . . . , sj) .

We note the completely general fact:

Lemma 5.2. ψ(n)(s∗) = ψ(n)(s).

This relation is independent of the function ψ, and is trivially verified from
the definition of ψ(n). It will apply to three important special cases below. We
start with the function ψ(u) = ζQ(2u), where ζQ is the Riemann zeta function.
Then we use a special letter ZQ and define

ZQ,n(s) =
n−1∏
i=1

ζQ(2(sn − si + 1/2))

Z
(n)
Q (s) =

∏
1�i<j�n

ζQ(2(sj − si + 1/2)).

Lemma 5.3. With ΦQ,n−1 as in Lemma 2.1, we have

ΦQ,n−1(z1, . . . , zn−1) = ZQ,n(s1, . . . , sn) .

Proof. By definition,

ΦQ,n−1(z) =
n−1∏
i=1

ζQ(2(zi + . . . + zn−1) − (n − i − 1)) .

With the s-variables, we get a cancellation, namely

zi + . . . + zn−1 = sn − si +
n − i

2
.(4)

This proves the lemma.

The non-primitive Eisenstein series E
(n−1)
U (Y, z) is defined to be the prod-

uct of the primitive Eisenstein series times Φ(n−1)
Q (z). Hence from the transfer

to the s-variables in Lemma 5.3 we have

ζ(Y, s) = E
(n−1)
U (Y, z) = Z

(n)
Q (s)ζpr(Y, s) .(5)

Since Z
(n)
Q (s∗) = Z

(n)
Q (s) by Lemma 5.2, it follows that Proposition 5.1 is valid

if we replace the primitive Eisenstein series ζpr(Y, s) by ζ(Y, s).
In connection with using Posn+1 via Theorem 4.3 and Corollary 4.4, it is

natural to consider q
(n)
−z as well as q

(n−1)
−z .
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Lemma 5.4. Put zn = sn+1 − sn + 1/2, and let ϕs,sn+1 be the character on
Posn defined by

ϕs,sn+1(Y ) = |Y |−sn+1−(n+1)/4hs(Y ) .

In other words, ϕs,sn+1 = d−sn+1−(n+1)/4hs. Then on Posn,

q
(n)
−z = ϕs,sn+1 .

Proof. By definition,

q
(n)
−z (Y ) = |Y |−znq

(n−1)
−z (Y ) .

Substituting zn = sn+1 − sn + 1
2 and using (2) yields the desired relation.

The Hecke-zeta eigenvalue is given by

λHZ(ϕs,sn+1) = ZQ,n+1(s1, . . . , sn+1) = ZQ,n+1(s, sn+1) .(6)

This is just the formulation of Lemma 2.1 in the (s, sn+1) variables. Further-
more,

wn(z) = deg ϕs,sn+1 =
n∑

i=1

(
si − sn+1 −

n + 1
4

)
.(7)

This is immediate from (3) and the homogeneity degree of the determinant.
We define various elementary functions from which we build others, and

relate them to eigenvalues found in the preceding section. We let

g(u) = π−uΓ(u) and F (u) = u(1 − u)g(u) .

These are standard fudge factors in one variable u. Following the previous
general pattern, we define

gn(s) = gn(s1, . . . , sn) =
n−1∏
i=1

g(sn − si + 1/2)

Fn(s) = Fn(s1, . . . , sn) =
n−1∏
i=1

F (sn − si + 1/2).

Finally, we define

g(n)(s) =
n∏

j=1

gj(s) and F (n)(s) =
n∏

j=1

Fj(s) .

These definitions follow the same pattern that we used with the fudge factor
involving the Riemann zeta function, i.e. ZQ,n(s) and Z

(n)
Q (s). In particular,

Fn+1(s1, . . . , sn+1) =
F (n+1)(s1, . . . , sn+1)

F (n)(s1, . . . , sn)
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and

F (n+1)(s, sn+1) =
n∏

j=1

Fj+1(s1, . . . , sj+1) .

The next lemma is the analogue of Proposition 5.3 for the fudge factor that
we are now dealing with.

Lemma 5.5. We have the explicit determination

Fn+1(s, sn+1) = πwnΛn(ϕ∗
s,sn+1

) .

The exponent wn is the degree in (7), as a function of s1, . . . , sn+1.

Proof. This is a tedious verification.

We apply Corollary 4.4 to the character q
(n)
−z = ϕs,sn+1 . We note that

q
(n)∗
−z = ϕ∗

s,sn+1
= dsn+1+(n+1)/4 hs∗ .(8)

Lemma 5.6. For Y ∈ Posn,

TrΓU\Γ(q(u)∗
−z (Y ) = TrΓU\Γ(ϕ∗

s,sn+1
)(Y ) = |Y |sn+1−s1+n/2ζpr(Y, s∗) .

Proof. By definition of s∗ = (−sn, . . . , s1) we have

ζpr(Y, s∗) = |Y |s1−(n−1)/4TrΓU\Γh∗
s(Y ) = TrΓU\Γ(ds1−(n−1)/4hs∗)(Y ) .

Multiplying by dsn+1−s1+n/2 and using (8) concludes the proof.

For S ∈ Posn+1,Γ = Γn, define

ξ(S; s, sn+1) = (Dθ ∗ TrΓU\Γ(ϕ∗
s,sn+1

))(S) .

Thus by definition of the convolution and Lemma 5.6,

ξ(S; s, sn+1) =
∫

Γn\Pn

Dθ(S, Y )|Y |sn+1−s1+n/2ζ(Y, s∗)dµ(Y ) .

Let B be the domain defined by the inequalities

Re(sj+1 − sj + 1/2) > 1 for j = 1, . . . , n − 1 and sn+1 arbitrary,

while B1 is defined by these inequalities together with

Re(s1 − sn+1 + 1/2) > 1 .

Estimates in Chap. 7 show that the integral for ξ converges absolutely in the
domain B1. In light of our definitions and Lemma 5.5, we may now reformulate
Theorem 4.3 or rather Corollary 4.4 as follows.

Theorem 5.7. In the domain defined by these inequalities, we have

ξ(S; s, sn+1) = Fn+1(s, sn+1)ζ(S; s, sn+1)

=
Fn+1(s1, . . . , sn+1)

F (n)(s1, . . . , sn)
ζ(S; s, sn+1) .
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6 Functional Equation: Invariance
under Cyclic Permutations

Here we follow Maass [Maa 71]. For the function ξ(S; s, sn+1) defined at the
end of the preceding section, we first have

Lemma 6.1. For S ∈ Posn+1,

ξ(S−1; s∗,−sn+1) = |S|n/2ξ(S; s, sn+1) .

Proof. This result is proved by the Riemann method. The integral over Γn\Pn

is decomposed into a sum
∫

Γn\Pn

=
∫

(Γn\Pn)(�1)

+
∫

(Γn\Pn)(�1)

,

where the parentheses (�1) and (�1) signify the subdomain where the de-
terminant is �1 resp. �1. On the second integral, we make the change of
variables Y �→ Y −1. Then letting Fn = Γn\Pn, we get:

ξ(S; s, sn+1)(1)

=
∫

Fn(�1)

{
Dθ(S, Y )|Y |sn+1−s1+n/2ζ(Y, s∗)

+Dθ(S, Y −1)|Y |s1−sn+1−n/2ζ(Y −1, s∗)
}
dµ(Y ) .

On the other hand,

ξ(S−1; s∗,−sn+1)(2)

=
∫

Fn(�1)

{
Dθ(S−1, Y )|Y |−sn+1+sn+n/2ζ(Y, s)

+Dθ(S−1, Y )|Y |sn+1−sn−n/2ζ(Y −1, s)
}
dµ(Y ) .

We now use two previous functional equations. One is the functional equation
for the regularized theta functions, namely Sect. 4, formulas (4) and (5), which
read:

Dθ(S−1, Y −1) = |S|n/2|Y |(n+1)/2Dθ(S, Y )

Dθ(S−1, Y ) = |S|n/2|Y |−(n+1)/2Dθ(S, Y −1)

The other equation is stated in Proposition 5.1, which is valid with ζ(Y, s)
instead of ζpr(Y, s), because Z

(n)
Q (s∗) = Z

(n)
Q (s) is the same factor needed

to change the primitive Eisenstein series into the non-primitive one. Ap-
plying this proposition and the functional equation for the theta function
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shows directly and immediately that the two terms under the integral for
ξ(S−1; s∗, sn+1) are changed precisely into the two terms which occur in the
integral expression for ξ(S; s, sn+1) multiplied by |S|n/2. This concludes the
proof.

Theorem 6.2. Let S ∈ Posn+1 and let

η(S; s(n+1)) = F (n+1)(s1, . . . , sn+1)|S|sn+1ζ(S; s1 . . . , sn+1) .

Then η(S; s1, . . . , sn+1) is invariant under a cyclic permutation of the vari-
ables, that is

η(S; s1, . . . , sn+1) =
F (n+1)(sn+1, s1, . . . , sn)|S|snζ(S; sn+1, s1, . . . , sn) .

Furthermore, η(S; s1, . . . , sn+1) is holomorphic in the domain B.

Proof. By Theorem 5.7 and F (n)(s∗) = F (n)(s), we have

ξ(S−1; s∗,−sn+1) = F (n+1)(s∗,−sn+1)

F (n)(s)
ζ(S−1; s∗,−sn+1)

=
F (n+1)(sn+1, s)

F (n)(s)
|S|−sn+1+sn+n/2ζ(S; sn+1, s1, . . . , sn)

by Proposition 5.1, valid in the domain Re(Sj+1 − sj + 1
2 ) > 1 for each index

j = 1, . . . , n − 1, that is in the domain B. On the other hand,

|S|n/2ξ(S; s, sn+1) =

F (n+1)(s1, . . . , sn, sn+1)
F (n)(s1, . . . , sn)

|S|n/2ζ(S, s1, . . . , sn, sn+1) .

Using the definition of η(S; s1, . . . , sn+1) and cross multiplying, we apply
Lemma 6.2 to conclude the proof.

Note. The three essential ingredients in the above proof are:

EIS 1. For each integer n � 3 there is a fudge factor F (n)(s1, . . . , sn) such
that for S ∈ Posn+1 we have

ξ(S; s, sn+1) =
F (n+1)(s1, . . . , sn, sn+1)

F (n)(s1, . . . , sn)
ζ(S; s, sn+1) .

Furthermore, F (n)(s∗) = F (n)(s) (invariance under s �→ s∗).
See Lemma 5.2 and Theorem 5.7.

EIS 2. ζ(Y −1, s) = |Y |sn−s1+(n−1)/2ζ(Y, s∗) in the domain

Re(sj+1 − sj + 1/2) > 1 .

Ref: Proposition 5.1 and Lemma 5.2.
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EIS 3. ξ(S−1; s∗,−sn+1) = |S|n/2ξ(S; s, sn+1)

Ref: Theorem 6.1.
Finally, we prove the analytic continuation over all of Cn+1 by means of

a theorem in several complex variables. That is, we want:

Theorem 6.3. The function η(S, s1, . . . , sn+1) is holomorphic on all of Cn+1.

Proof. We reduce the result to a basic theorem in several complex variables.
Let σ be the cyclic permutation

σ : (s1, . . . , sn+1) �→ (sn+1, s1, . . . , sn) .

By Theorem 6.2, we know that η is holomorphic in the domain

D =
n⋃

j=1

σjB ⊂ Cn+1 .

Let prRn+1(D) = DR be the projection on the real part. Since the inequalities
defining D involve only the real part, it follows that

D = DR + iRn+1,

so D is what is commonly called a tube domain. By Theorem 2.5.10 in
Hörmander [Hör 66], it follows that η is holomorphic on the convex closure
of the tube. But DR contains a straight line parallel to the (n + 1)-th axis
of Rn+1. This line can be mapped on a line parallel to the j-th axis of Rn+1

for each j, by powers of σ. The convex closure of these lines in the real part
Rn+1 is all of Rn+1, and by the theorem in Hörmander, it follows that the
convex closure of D is Cn+1. This concludes the proof.

7 Invariance under All Permutations

In light of the theorems in Sect. 6, all that remains to be done is to prove the
invariance of the function

η(Y ; s1, . . . , sn) = F (n)(s1, . . . , sn)|Y |snζ(Y ; s1, . . . , sn)

under a transposition, and even under the transposition between the special
variables s1 and s2. Then we shall obtain Selberg’s theorem:

Theorem 7.1. For Y ∈ Posn, the function η(Y ; s1, . . . , sn) is invariant un-
der all permutations of the variables.
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Proof. The following proof follows Selberg’s lines and is the one given in
Maass [Maa 71]. We have ζ(Y ; s) = E

(n−1)
U (Y, z) (the non-primitive Eisen-

stein series). The essential part of the proof will be to show that the function

π−s1Γ(z1)E
(n−1)
U (Y, z) = π−(s2−s1+1/2)Γ(s2 − s1 + 1/2)ζ(Y, s)

is invariant under the transpositon of s1 and s2. Before proving this, we show
how it implies the theorem. As before, let

g(u) = π−uΓ(u) .

Then it follows that
∏

1�i<j�n

g(sj − si + 1/2)|Y |snζ(Y, s) = g(n)(s)|Y |snζ(Y, s)

is invariant under the transposition of s1 and s2. By Theorem 6.2 we con-
clude that this function is invariant under all permutations of (s1, . . . , sn).
Theorem 7.1 follows by the factorization of F (n)(s1, . . . , sn) given in Sect. 5.

To prove the invariance of g(z1)E
(n−1)
U (Y, z) under the transposition of s1

and s2, we go back to the definition of the Eisenstein series in terms of the
z-variables, and we write this definition in the form

E
(n−1)
T (Y, z) =

∑
(Cn,...,C2)

n−1∏
j=2

|Cj(Y )|−zj E
(1)
T (C2(Y ), z1) with Cn = γ .

The sum over (Cn, . . . , C2) is over equivalence classes, whose definition for
such truncated sequences is the same as for (Cn, . . . , C1), except for disre-
garding the condition on C1. The theorem was proved in Chap. 5, Theorem
4.1 in the case n = 2, so we assume n � 3. We write the Eisenstein series with
one further splitting, that is

E
(n−1)
T (Y, z) =

∑
(Cn,...,C2)

n−1∏
j=3

|Cj(Y )|−zj |C2(Y )|−z2E
(1)
T (C2(Y ), z1) .

Although the notation with the chains was the clearest previously, it now
becomes a little cumbersome, so we abbreviate

Cj(Y ) = Yj for j = 1, . . . , n .

Then we rewrite the above expressions for the Eisenstein series in the form

E
(n−1)
T (Y, z) =

∑
(Yn,...,Y2)

n−1∏
j=2

|Yj |−zj E
(1)
T (Y2, z1)(1)
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=
∑

(Yn,...,Y2)

n−1∏
j=3

|Yj |−zj |Y2|−z2E
(1)
T (Y2, z1) .(2)

With the change of variables zj = sj+1 − sj + 1/2, we can also write

|Y2|−z2E
(1)
T (Y2, z1) = 22|Y2|s2−s3+1/2ζ(Y2; s1, s2) .

By Theorem 4.1 of Chap. 5, the function

η2(Y ; s1, s2) = π−z1Γ(z1)|Y |s2ζ(Y2; s1, s2)

is invariant under permutation of s1 and s2, because in the notation of this
reference,

E(Y2, z) = E(1)(Y2, z) = ζ(Y2; s1, s2) .

Thus formally, we conclude that

π−z1Γ(z1)ζ(Y ; s1, . . . , s2) = π−z1Γ(z1)E(n−1)(Y, z)

is invariant under the permutation of s1 and s2. The only thing to watch for
is that this permutation can be done while preserving the convergence of the
series expression (2) for E(n−1)(Y, z). Thus one has to select an appropriate
domain of absolute convergence, so that all the above expressions make sense.
Maass does this as follows. We start with the inductive lowest dimensional
piece,

Λ2(Y, z1) = π−z1Γ(z1)E(1)(Y, z1),

which is the first case studied in Chap. 5, Sect. 3. We gave an estimate for
this function in the strip Str(−2, 3), that is

−2 < Re(z1) < 3 ,

away from 0 and 1, specifically outside the discs of radius 1 centered ar 0 and
1, as in Corollary 3.8 of Chap. 5.

Next, we consider the series

π−z1Γ(z1)E(n−1)(y, Z) =
∑

(Yn,...,Y2)

n−1∏
j=2

|Yj |−zjΛ2(Y2, z1) .(3)

By Theorem 3.1, mostly Theorem 2.2 of Chap. 7, the series in (3) converges
absolutely for Re(zj) > 1, j = 1, . . . , n − 1. Similarly, by Chap. 7, Theorem
3.1, we also know that the series

∑
(Yn,...,Y2)

n−1∏
j=2

|Yj |−zj(4)

converges absolutely for Re(zj) > 1 (3 � j � n − 1) and Re(z2) > 3/2. By
Chap. 5, Corollary 3.8 (put there for the present purpose), adding up the
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power of |Y2|, in the sbove strip outside the unit discs around 0, 1, it follows
that the Eisenstein series from (1) converges absolutely in the domain

D1 = points in Cn with z1 in the strip Str(−2, 3) outside the discs of
radius 1 around 0, 1; and

Re(z2) > 7/2; Re(zj) > 1 for j = 3, . . . , n − 1 .

Let
D2 = subdomain of D1 satisfying the further inequality Re(z2) > 6.

In terms of the variables z, we want to prove the functional equation

∑
(Yn,...,Y2)

n−1∏
j=3

|Yj |−zj |Y2|−z2Λ2(Y2, z1)

=
∑

(Yn,...,Y2)

n−1∏
j=3

|Yj |−zj |Y2|−z1−z2+1/2Λ2(Y2, 1 − z1) .

The series on both sides are convergent in D2, so the formal argument is now
justified, and we have proved that

π−z1Γ(z1)E(n−1)(Y, z)

is invariant under the equivalent transformations:

z1 �→ 1 − z1, z2 �→ z1 + z2 − 1/2, zj �→ zj (j = 3, . . . , n − 1), sn �→ sn ,

or
transposition of s1 and s2 .

This concludes the proof of Theorem 7.1.

Remark. Just as Maass gave convergence criteria for Eisenstein series with
more general parabolic groups [Maa 71], Sect. 7, he also gives the analytic
continuation and functional equation for these more general groups at the
end of Sect. 17, pp. 279–299.
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