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Geometric and Analytic Estimates

In Chap. 1 and 2, we dealt at length with estimates concerning various co-
ordinates on Posn and the volume on Posn. Here we come to deal with the
metric itself, and the application of coordinate estimates to the convergence
of certain Dirichlet series called Eisenstein series. Further properties of such
series will then be treated in the next chapter. On the whole we follow the ex-
position in Maass [Maa 71], Sect. 3, Sect. 7 and especially Sect. 10, although
we make somewhat more efficient use of the invariant measure in Iwasawa
coordinates, thereby introducing some technical simplifications.

1 The Metric and Iwasawa Coordinates

The basic differential geometry of the space Posn is given in Chap. XI of [La
99] and will not be reproduced here. We merely recall the basic definition.
We view Symn (vector space of real symmetric n×n matrices) as the tangent
space at every point Y of Posn. The Riemannian metric is defined at the point
Y by the formula

ds2 = tr((Y −1dY )2) also written tr(Y −1dY )2 .

This means that if t �→ Y (t) is a C1 curve in Posn, then

〈Y ′(t), Y ′(t)〉Y (t) = tr(Y (t)−1Y ′(t))2 ,

where Y ′(t) is the naive derivative of the map of a real interval into Posn,
viewed as an open subset of Symn.

The two basic properties of this Riemannian metric are:

Theorem 1.1. Let Symn have the positive definite scalar product given by
〈M,M1〉 = tr(MM1). Then the exponential map exp : Symn → Posn is metric
semi-increasing, and is metric preserving on lines from the origin.
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Theorem 1.2. The Riemannian distance between any two points Y,Z ∈ Posn

is given by the formula

dist(Y,Z) =
∑

(log ai)2 ,

where a1, . . . , an are the roots of the polynomial det(tY − Z).

See [La 99], Chap. XI, Theorems 1.2, 1.3 and 1.4. In the present section,
we shall consider the distance formula in the context of Iwasawa-Jacobi coor-
dinates.

As in Chap. 2, Sect. 2 the partial Iwasawa-Jacobi coordinates of an element
Y ∈ Posn are given by the expression

Y = [u(X)]

⎛
⎝

W 0

0 v

⎞
⎠ , u(X) =

⎛
⎝

Ip X

0 Iq

⎞
⎠ ,

with X ∈ Rp,q,W ∈ Posp and V ∈ Posq. Matrix multiplication shows that

Y =

⎛
⎝

W + [X]V XV

V tX V

⎞
⎠ .(1)

In particular, by definition
V = Subq(Y )

is the lower right square submatrix which we have used in connection with
the Selberg power function, cf. Chap. 3, Sect. 1. We shall need the matrix for
Y −1, given by

Y −1 =

⎛
⎝

W−1 0

0 v−1

⎞
⎠ [u(−X)]

=

⎛
⎝

W−1 −W−1X

−tXW−1 V −1 + [tX]W−1

⎞
⎠ .(2)

Theorem 1.3. The metric on Posn admits the decomposition

tr(Y −1dY )2 = tr(W−1dW )2 + tr(V −1dV )2 + 2tr(W−1[dX]V ) .

All three terms on the right are � 0. In particular,

tr(V −1dV )2 � tr(Y −1dY )2 ,

and the map

Posn → Posq given by Y �→ Subq(Y ) = V

is metric decreasing.
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Proof. We copy Maass [Maa 71], Sect. 3. We start with

dY =

⎛
⎝

dW + [X]dV + dX · V tX + XV · d tX dX · V + XdV

dV · tX + V · d tX dV

⎞
⎠ .(3)

With the abbreviation

dY · Y −1 =

⎛
⎝

L0 L1

L2 L3

⎞
⎠

we have

tr(Y −1dY )2 = tr(dY · Y −1 · dY · Y −1)(4)
= tr(L2

0 + L1L2) + tr(L2L1 + L2
3) .

A straightforward calculation yields

L0 = dW · W−1 + XV · d tX · W−1(5)
L1 = −dW · w−1X − XV · d tX · W−1X + dX + X · dV · V −1

L2 = V · dX · W−1

L3 = dV · V −1 − V · d tX · W−1X .

The formula giving the decomposition of tr(Y −1dY )2 as a sum of three terms
then follows immediately from (4) and the values for the components in (5).
As to the positivity, the only possible question is about the third term on the
right of the formula. For this, we write W = A2 and V = B2 with positive
A,B. Let Z = B · d tX · A−1. Then

tr(W−1[dX]V ) = tr(Z tZ) ,

which shows that the third quadratic form is positive definite and concludes
the proof.

Let G = GLn(R) as usual. It is easily verified that the action of G on
Posn is metric preserving, so G has a representation as a group of Riemannian
automorphisms of Posn. Again cf. [La 99] Chap. XI, Theorem 1.1. Here we are
interested in the behavior of the determinant |Y | as a function of distance.
Consider first a special case, taking distances from the origin I = In. By
Theorem 1.2, we know that if Y ∈ Br(I) (Riemannian ball of radius r centered
at I), then

dist(Y, I)2 =
∑

(log ai)2 < r2 .

It then follows that there exists a number cn(r), such that for Y ∈ Br(I), we
have

1
cn(r)

< |Y | < cn(r) .(6)
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Indeed, the determinant is equal to the product of the characteristic roots,

|Y | = a1 . . . an .

With the Schwarz inequality, we take cn(r) = e
√

nr. Note that from an upper
bound for |Y |, we get a lower bound automatically because Y �→ Y −1 is an
isometry. From another point of view, we also have (log ai)2 = (log a−1

i )2.
In the above estimate, we took a ball around I. But the transitive action

of G on Posn gives us more uniformity. Indeed:

Lemma 1.4. For any pair Y,Z ∈ Posn with dist(Y,Z) < r, we have

cn(r)−1 <
|Z|
|Y | < cn(r).

Proof. We have
|tZ − Y | = |Y | |tY −1Z − I| .

The roots of this polynomial are the same as the roots of the polynomial
|t[Y − 1

2 ]Z ∈ Br(I), so the lemma follows from the corresponding statement
translated to the origin I.

0

Cij

Cii

We shall also be interested in the subdeterminants Subj(Y ) of Y . By
Theorem 1.3, we know that the association Y �→ Subj(Y ) is metric decreasing.
Hence we may extend the uniformity of Lemma 1.4 as follows.

Lemma 1.5. For g ∈ GLn(R) and all pairs Y,Z ∈ Posn with dist (Y,Z) � r,
and all j = 1, . . . , n we have

cn(r)−1|Subj [g]Y | < |Subj [g]Z| < cn(r)|Subj [g]Y | .

Briefly: |Subj [g]Z| ��r |Subj [g]Y |.

Next, let

Dr =

{
Y ∈ Posn such that

|Y | < cn(r) and |SubjY | >
1

cn(r)
for j = 1, . . . , n

}
.
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Lemma 1.6. For all γ ∈ Γ = GLn(Z) we have

Br([γ]I) ⊂ Dr .

Proof. Let Y ∈ Br([γ]I). Then [γ−1]Y ∈ Br(I), and we can apply (6), as well
as |[γ−1]I| = 1 to prove the inequality |Y | < cn(r). For the other inequality,
by the distance decreasing property, we have

dist(Subj [γ]I,SubjY ) � dist([γ]I, Y ) < r .

Hence by Lemma 1.4,

|SubjY | >
1

cn(r)
|Subj([γ]I)| � 1

cn(r)

because [γ]I is an integral matrix, with determinant � 1. This concludes the
proof.

The set of elements [γ]I with γ ∈ Γ is discrete in Posn. We call r > 0 a
radius of discreteness for Γ if dist([γ]I, I) < 2r implies γ = ±I, that is [γ]
acts trivially on Posn. We shall need:

Lemma 1.7. Let γ, γ′ ∈ Γ, and let r be a radius of discreteness for Γ. If
there is an element Y ∈ Posn in the intersection of the balls Br([γ]I) and
Br([γ′]I), then [γ] = [γ′], that is γ = ±γ.

Proof. By hypothesis, dist([γ]I, [γ′]I) < 2r, so

dist([γ−1γ′]I, I) < 2r ,

and the lemma follows.

2 Convergence Estimates for Eisenstein Series

We shall need a little geometry concerning the action of the unipotent group
on Posn, so we start with an independent discussion of this geometry.

An element Y ∈ Posn can be written uniquely in the form

Y = [u(X)]A with u(X) = In + X ,

and

A =

⎛
⎜⎝

a11 . . . 0
...

. . .
...

0 . . . ann

⎞
⎟⎠ , aii > 0 ,

and X = (xij) is strictly upper triangular. We call (X,A) the full Iwasawa
coordinates for Y on Posn.
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Let Γ = GLn(Z) as usual, ΓU = subgroup of unipotent elements in Γ, so
the upper triangular integral matrices with every diagonal element equal to
1. Thus γ ∈ ΓU can be written γ = In + X with an integral matrix X.

It is easy to construct a fundamental domain for ΓU\Posn. First we note
that a fundamental domain for the real unipotent group Uni+(R) modulo the
integral subgroup ΓU consists of all elements u(X) such that 0 � xij < 1.
We leave the proof to the reader. In an analogous discrete situation when all
matrices are integral, we shall carry out the inductive argument in Lemma
1.2 of Chap. 8, using the euclidean algorithm. In the present real situation,
one uses a “continuous” euclidean algorithm, as it were. Then we define:

FU = set of elements [u(X)]A ∈ Posn with 0 � xij < 1 .

From the uniqueness of the Iwasawa coordinates, we conclude that FU is a
strict fundamental domain for ΓU\Posn.

The main purpose of this section is to prove the convergence of a certain
series called an Eisenstein series. We shall prove it by an integral test, depend-
ing on the finiteness of a certain integral, which we now describe in a fairly
general context.

Let c > 0. We define the subset D(c) of Posn to be:

D(c) = {Y ∈ Posn, |Y | < c and |SubjY | > 1/c for all j = 1, . . . , n} .

We recall the Selberg power function

q
(n)
−z (Y ) =

n∏
j=1

|SubjY |−zj .

We are interested in the integral of this power function over a set

D(c) ∩ FU .

To test absolute convergence, it suffices to do so when all zj are real. The next
lemma will prove absolute convergence when Re(zj) > 1.

Lemma 2.1. Let b > 1. Then
∫

D(c)∩FU

n∏
j=1

|SubjY |−bdµn(Y ) < ∞ .

Proof. In Chap. 2, Proposition 2.4, we computed the invariant measure
dµn(Y ) in terms of the Iwasawa coordinates, and found

dµn(Y ) =
n∏

i=1

a
i−(n+1)/2
ii

n∏
i=1

daii

aii

∏
i<j

dxij .(1)
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We note that |SubjY | = an−j+1 . . . an, writing ai = aii. Hence, if we take
ε > 0 and set b = 1 + ε, we have

n∏
j=1

|SubjY |−b =
n∏

i=1

a−i−εi
i .(2)

The effect of intersecting D(c) with Fu is to bound the xij-coordinates. Thus
the convergence of the integral depends only on the ai-coordinates. To con-
centrate on them, we let

dµn,A =
n∏

i=1

a
i−(n+1)/2
i

n∏
i=1

dai

ai
.

We let DA(c) be the region in the A-space defined by the inequalities

1
c

< a1 · · · an < c and an >
1
c

,

anan−1 >
1
c
, . . . , anan−1 · · · a1 >

1
c

.

Thus DA(c) is a region in the n-fold product of the positive multiplicative
group, and the convergence of the integral in our lemma is reduced to the
convergence of an integral in a euclidean region, so to calculus. Taking
the product of the expressions in (1) and (2), and integrating over DA(c),
we see that the finiteness of the integral in our lemma is reduced to proving
the finiteness

∫

DA(c)

∏
a
−(εi+1+(n+1)/2)
ii

∏
daii < ∞ .(3)

Just to see what’s going on, suppose n = 2 and the variables are

a1 = u and a2 = v .

The region is defined by the inequalities

1
c

< uv < c and v >
1
c

.

The integral can be rewritten as the repeated integral

∞∫

1/c

⎛
⎜⎝

c/v∫

1/cv

u−(1+ε+(n+1)/2)du

⎞
⎟⎠ v−(2ε+1+(n+1)/2)dv .

The inner integral with respect to u can be evaluated, and up to a constant
factor, it produces a term
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vε+(n+1)/2

which cancels the similar expression in the outer v-integral. Thus finally the
convergence is reduced to

∞∫

1/c

1
v1+ε

dv < ∞

which is true. Having n variables only complicates the notation but not the
idea, which is to integrate successively with respect to dan, then dan−1, and
so forth until da1, which we leave to the reader to conclude the proof of
Lemma 2.1.

Next we combine the metric estimates from the last section with the mea-
sure estimates which we have just considered. Let r be a radius of discreteness
for Γ, defined at the end of the last section. Then

Dr = D(cn(r)) ,

where D(c) is the set we considered in Lemma 2.1.
Let {γm} (with m = 1, 2, . . .) be a family of coset representatives for

±ΓU\Γ. For each m we let τmk(k = 1, . . . , dm) be a minimal number of ele-
ments of ±ΓU such that

Br([γm]I) ⊂
dm⋃
k=1

[τmk]FU .

In particular, the intersection

Smk = Br([γm]I) ∩ [τmk]FU

is not empty for each m, k. The set D defined above is stable under the action
of ΓU . Hence translating the sets Smk back into FU we conclude that

[τ−1
mk]Smk ⊂ Dr ∩ FU for all m, k .(4)

By Lemma 1.7, the sets [τ−1
mk]Smk are disjoint, for pairs (m, k) defined as

above.
We are now ready to apply the geometry to estimate certain series.
Let ρ be a character. The primitive Eisenstein series is defined by

Epr
U (Y, ρ) =

∑
γ∈ΓU\Γ

ρ([γ]Y ) .

We shall be concerned with the character equal to the Selberg power function,
that is q

(n−1)
−z , so that by definition,

E
pr(n−1)
U (Y, z) =

∑
γ∈ΓU\Γ

n−1∏
j=1

|Subj [γ]Y |−zj .
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First, note that any Y ∈ Posn lies in some ball Br(I), and by Lemma 1.5,
we see that the convergence of the series for any given Y is equivalent to the
convergence with Y = I. We also have uniformity of convergence in a ball of
fixed radius. In addition, we note that

|Subn[γ]Y | = |[γ]Y | = |Y | for all γ ∈ Γ .

Thus the convergence of the above Eisenstein series is equivalent with the
convergence of

E
pr(n)
U (Y, z) =

∑
γ∈ΓU\Γ

n∏
j=1

|Subj [γ]Y |−zj .

Furthermore, zn has no effect on the convergence. The main theorem is:

Theorem 2.2. The Eisenstein series converges absolutely for all zj with
Re(zj) > 1 for j = 1, . . . , n − 1.

Proof. First we replace zj by a fixed number b > 1. We prove the convergence
for Y = I, but we shall immediately take an average, namely we use the
inequalities for Y ∈ Br(I), with r a radius of discreteness for Γ:

E(I, b) =
∑

γ∈ΓU\Γ

n∏
j=1

|Subj([γ]I)|−b(5)

�
∑

γ∈ΓU\Γ

∫

Br(I)

n∏
j=1

|Subj [γ]Y |−bdµ(Y )

�
∑

γ∈ΓU\Γ

∫

Br([γ]I)

n∏
j=1

|SubjY |−bdµ(Y ) .

We combine the inclusion (4) with the estimate in (5). We use the fact that

|Subj [τ ]Y | = |SubjY | for τ ∈ ΓU ,

and we translate each integral back into FU . We then obtain from (5)

E(I, b) �n

∞∑
m=1

dm∑
k=1

∫

[τ−1
mk]Smk

n∏
j=1

|SubjY |−bdµ(Y )

�n

∫

Dr∩FU

n∏
j=1

|SubjY |−bdµn(Y ) .

The sign �n means that the left side is less than the right side times a
constant depending only on n. We have used here the fact already determined
that the sets [τ−1

mk]Smk are disjoint and contained in Dr ∩ FU . The finiteness
of the integral was proved in Lemma 2.1, which thereby concludes the proof
of Theorem 2.2.
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3 A Variation and Extension

In the application of Chap. 8, one needs convergence of a modified Eisenstein
series, specifically the following case.

Theorem 3.1. The series

∑
γ∈ΓU\Γ

n∏
j=2

|SubjY |−zj

converges absolutely for Re(z2) > 3/2 and Re(zj) > 1 with j � 3.

The proof is the same as the proof of Theorem 2.2. One uses the same set
D(c). Lemma 2.1 has its analogue for the product with one term omitted. The
calculus computation comes out as stated. For instance, for n = 3, the region
D(c) is defined by the inequalities

1
c

< uvw < c, vw >
1
c
, w >

1
c

.

The series is dominated by the repeated integral

∞∫

1/c

∞∫

1/wc

c/vw∫

1/vwc

(vw)−3/2−εu(n+1)/2v1−(n+1)/2w2−(n+1)/2dudvdw ,

which comes out up to a constant factor to be

∞∫

1/c

w−1−εdw .

For various reasons, including the above specific application, Maass ex-
tends the convergence theorem still further as follows [Maa 71].

Let
0 = k0 < k1 < . . . < km < km+1 = n

be a sequence of integers which we call an integral partition P of n. Let

ni = ki − ki−1, i = 1, . . . ,m + 1 .

Then n = n1 + . . . + nm+1 is a partition of n in the number theoretic sense.
Matrices consisting of blocks of size ni (with i = 1, . . . ,m+1) on the diagonal
generalize diagonal matrices. We let:

ΓP = Subgroup of Γ consisting of elements which are upper diagonal
over such block matrices, in other words, elements γ = (Cij)
Cii ∈ Γni

for 1 � i � m + 1 and Cij = 0 for 1 � j < i � m + 1.
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In the previous cases, we have kj = j, nj = 1 for all j = 1, . . . , n, and
m+1 = n. The description of the groups associated with a partition as above
is slightly more convenient than to impose further restriction, but we note
that in this case the diagonal elements may be ±1, so we are dealing with the
group T rather than the unipotent group U .

A group such that ΓP above is also called a parabolic subgroup.
We define the Eisenstein series as a function of variables z1, . . . , zm by

EP (Y, z) =
∑

γ∈ΓP \Γ

m∏
i=1

|Subki
[γ]Y |−zi .

Theorem 3.2. ([Maa 71], Sect. 7) This Eisenstein series is absolutely con-
vergent for

Re(zi) >
1
2
(ni+1 + ni) =

1
2
(ki+1 − ki−1), i = 1, . . . ,m .

Proof. One has to go through the same steps as in the preceding section,
with the added complications of the more elaborate partition. One needs the
Iwasawa-Jacobi coordinates with blocks,

Y = [u(X)]

⎛
⎜⎝

W1 . . . 0
...

. . .
...

0 . . . Wm+1

⎞
⎟⎠ and u(X) =

⎛
⎜⎝

In1 . . . Xij

...
. . .

...
0 . . . Inm+1

⎞
⎟⎠ .

The measure is given by

dµn(Y ) =
m+1∏
i=1

|Wi|(ki−ki−1−n) dµ(Wi)
∏

1�i<j�m+1

dµeuc(Xij) .

The fundamental domain for ΓP consists of those Y whose coordinates satisfy:

Wi ∈ Fundamental domain for Γni
(i = 1, . . . ,m + 1) in Posni

.

Xij has coordinates 0 � xνµ < 1.

The domain D(c) is now

DP (c) =
{

Y such that Wi > 0 for all i = 1, . . . ,m + 1;

m+1∏
i=1

|Wi| < c, |Wm| >
1
c
, |Wm||Wm−1| >

1
c
, . . . , |Wm| . . . |W1| >

1
c
.

}

thus we merely replace ai by |Wi| throughout the previous definition. Maass
gives his proof right away with the more complicated notation, and readers
can refer to it.
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Note that Theorem 3.1 is a special case of Theorem 3.2. However, the
notation of Theorem 3.1 is simpler, and we thought it worth while to state it
and indicate its proof separately, using the easier notation for the Eisenstein
series.

The subgroup ΓP is usually called a parabolic subgroup. Such sub-
groups play an essential role in the compactification of Γn\Posn, and in the
subsequent spectral eigenfunction decomposition.
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