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1 Introduction

The present lecture notes have grown out of a wish to understand whether
certain important concepts of classical infinite divisibility and Lévy processes,
such as selfdecomposability and the Lévy-Ité6 decomposition, have natural
and interesting analogues in free probability. The study of this question has
led to new links between classical and free Lévy theory, and to some new
results in the classical setting, that seem of independent interest. The new
concept of Upsilon mappings have a key role in both respects. These are
regularizing mappings from the set of Lévy measures into itself or, otherwise
interpreted, mappings of the class of infinitely divisible laws into itself. One
of these mappings, 1", provides a direct connection to the Lévy-Khintchine
formula of free probability.

The next Section recalls a number of concepts and results from the clas-
sical framework, and in Section 3 the basic Upsilon mappings 7y and 1" are
introduced and studied. They are shown to be smooth, injective and regular-
izing, and their relation to important subclasses of infinitely divisible laws is
discussed. Subsequently 75 and 7" are generalized to one-parameter families
of mappings (T¢")acio,1] and (T'*)aepo,1] with similar properties, and which
interpolate between 1} (resp. 7°) and the identity mapping on the set of Lévy
measures (resp. the class of infinitely divisible laws). Other types of Upsilon
mappings are also considered, including some generalizations to higher di-
mensions. Section 4 gives an introduction to non-commutative probability,
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particularly free infinite divisibility, and then takes up some of the above-
mentioned questions concerning links between classical and free Lévy theory.
The discussion of such links is continued in Section 5, centered around the
Upsilon mapping 7" and the closely associated Bercovici-Pata mapping A.
The final Section 6 discusses free stochastic integration and establishes a free
analogue of the Lévy-Ito representation.

The material presented in these lecture notes is based on the authors’ pa-
pers [BaTh02a], [BaTh02b], [BaTh02c|, [BaTh04a], [BaTh04b] and [BaTh05].

2 Classical Infinite Divisibility and Lévy Processes

The classical theory of infinite divisibility and Lévy processes was founded
by Kolmogorov, Lévy and Khintchine in the Nineteen Thirties. The mono-
graphs [5a99] and [Be96],[Be97] are main sources for information on this the-
ory. For some more recent results, including various types of applications, see
[BaMiRe01].

Here we recall some of the most basic facts of the theory, and we dis-
cuss a hierarchy of important subclasses of the space of infinitely divisible
distributions.

2.1 Basics of Infinite Divisibility

The class of infinitely divisible probability measures on the real line will here
be denoted by ZD(x). A probability measure p on R belongs to ZD(x) if there
exists, for each positive integer n, a probability measure p,,, such that

—_————

n terms

where * denotes the usual convolution of probability measures.

We recall that a probability measure p on R is infinitely divisible if and
only if its characteristic function (or Fourier transform) f,, has the Lévy-
Khintchine representation:

: 2
log f,.(u) = iyu —F/]R (e”*t -1- %) 11—7275 o(dt), (veR), (2.1)
where v is a real constant and o is a finite measure on R. In that case, the
pair (v, o) is uniquely determined, and is termed the generating pair for p.

The function log f,, is called the cumulant transform for p and is also
denoted by C),, as we shall do often in the sequel.

In the literature, there are several alternative ways of writing the above
representation. In recent literature, the following version seems to be preferred

(see e.g. [5a99]):
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log fy,(u) = inu — Lau? —|—/ (e — 1 —iutli_y1)(t)) p(dt), (u€R), (2:2)
R

where 7 is a real constant, a is a non-negative constant and p is a Lévy
measure on R according to Definition 2.1 below. Again, a, p and 7 are uniquely
determined by p and the triplet (a, p,n) is called the characteristic triplet for
1

Definition 2.1. A Borel measure p on R is called a Lévy measure, if it sat-
isfies the following conditions:

p({0}) =0 and /Rmin{l,tQ} p(dt) < oo.

The relationship between the two representations (2.1) and (2.2) is as
follows:

a=a({0}),

14 ¢2

p(dt) = e 1R\{O}(t) o(d), (2.3)

n=7+ [ (1m0 - ) ol

2.2 Classical Lévy Processes

For a (real-valued) random variable X defined on a probability space (£2, F, P),
we denote by L{X} the distribution® of X.

Definition 2.2. A real valued stochastic process (X;)i>0, defined on a prob-
ability space (£2,F,P), is called a Lévy process, if it satisfies the following
conditions:

(i) whenever n € N and 0 < tg < t; < .-+ < t,, the increments
Xtoath - Xt07Xt2 - tha .. ath - th717

are independent random variables.

(ii) Xo = 0, almost surely.

(iil) for any s,t in [0, 00[, the distribution of Xsy+ — Xs does not depend on s.

(iv) (Xy) is stochastically continuous, i.e. for any s in [0, 00[ and any positive
€, we have: limy_,o P(| X541t — X5| > €) = 0.

(v) for almost all w in 2, the sample path t — X;(w) is right continuous (in
t > 0) and has left limits (int > 0).

'L stands for “the law of”.
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If a stochastic process (X;);>o satisfies conditions (i)-(iv) in the definition
above, we say that (X;) is a Lévy process in law. If (X;) satisfies conditions
(i), (ii), (iv) and (v) (respectively (i), (ii) and (iv)) it is called an additive
process (respectively an additive process in law). Any Lévy process in law
(X¢) has a modification which is a Lévy process, i.e. there exists a Lévy
process (Y:), defined on the same probability space as (X;), and such that
X; = Y; with probability one, for all ¢. Similarly any additive process in law
has a modification which is a genuine additive process. These assertions can
be found in [Sa99, Theorem 11.5].

Note that condition (iv) is equivalent to the condition that Xs 1 —Xs — 0
in distribution, as ¢ — 0. Note also that under the assumption of (ii) and (iii),
this condition is equivalent to saying that X; — 0 in distribution, as ¢ \, 0.

The concepts of infinitely divisible probability measures and of Lévy
processes are closely connected, since there is a one-to-one correspondance
between them. Indeed, if (X;) is a Lévy process, then L{X;} is infinitely
divisible for all ¢ in [0, co[, since for any positive integer n

n

X = Z(th/n — X(j—1)t/n)

j=1
and hence, by (i) and (iii) of Definition 2.2,

L{X;} = L{Xt/n} * L{Xt/n} oo Xk L{Xt/n}'

n terms

Moreover, for each t, L{X;} is uniquely determined by L{X;} via the relation
L{X:} = L{X1}"' (see [S299, Theorem 7.10]). Conversely, for any infinitely
divisible distribution p on R, there exists a Lévy process (X;) (on some prob-
ability space (£2,F, P)), such that L{X;} = p (cf. [S5a99, Theorem 7.10 and
Corollary 11.6]).

2.3 Integration with Respect to Lévy Processes

We start with a general discussion of the existence of stochastic integrals
w.r.t. (classical) Lévy processes and their associated cumulant functions. Some
related results are given in [ChSh02] and [Sa00], but they do not fully cover
the situation considered below.

Throughout, we shall use the notation C{u I X} to denote the cumulant
function of (the distribution of) a random variable X, evaluated at the real
number u.

Recall that a sequence (o,) of finite measures on R is said to converge
weakly to a finite measure o on R, if

/Rf(t) o, (dt) — /Rf(t) o(dt), asn — oo, (2.4)
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for any bounded continuous function f: R — C. In that case, we write o,, — 0o,
as n — o0o.

Remark 2.3. Recall that a sequence (x,) of points in a metric space (M, d)
converges to a point x in M, if and only if every subsequence (x,,/) has a subse-
quence (z,~) converging to . Taking M = R it is an immediate consequence
of (2.4) that o,, = o if and only if any subsequence (o,) has a subsequence
(0p7) which converges weakly to o. This observation, which we shall make use
of in the folowing, follows also from the fact, that weak convergence can be
viewed as convergence w.r.t. a certain metric on the set of bounded measures
on R (the Lévy metric).

Lemma 2.4. Let (X, m)nmen be a family of random wvariables indexed by
N x N and all defined on the same probability space (£2,F, P). Assume that

Yu € R: / ™ L{X, m}(dt) — 1,  asn,m — oo. (2.5)
R

Then Xp.m LR 0, as n,m — oo, in the sense that
Ve >0: P(| X, ;m| >€) — 0, asn,m— oo. (2.6)

Proof. This is, of course, a variant of the usual continuity theorem for char-
acteristic functions. For completeness, we include a proof.

To prove (2.6), it suffices, by a standard argument, to prove that L{X,, ,,,} ~
do, as n,m — oo, i.e. that

¥ € CoR): [ F0 L{Xnm}dt) — [ FO bl = £0), e mm — o,
R R
(2.7)
where C(R) denotes the space of continuous bounded functions f: R — R.
So assume that (2.7) is not satisfied. Then we may choose f in Cp(R) and
€ in ]0, oo[ such that
YN € N 3n,m > N: (/ F(8) L{ X H(dt) — f(O)‘ > e
R

By an inductive argument, we may choose a sequence n; < ns < nz < ng <
-+« of positive integers, such that

9 € N: | [ 0 LK Helt) = 7(0)] 2 €. (25)
R
On the other hand, it follows from (2.5) that
Vu € R: / e L{X 1y mop o }(dt) — 1, as k — oo,
R

so by the usual continuity theorem for characteristic functions, we find that
L{X 100 9s 1 } — 0. But this contradicts (2.8). O
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Lemma 2.5. Assume that 0 < a < b < oo, and let f: [a,b] — R be a con-
tinuous function. Let, further, (X;)i>0 be a (classical) Lévy process, and put

uw = L{X1}. Then the stochastic integral ff f(t)dX, exists as the limit, in

probability, of approximating Riemann sums. Furthermore, L{f;7 ) dX;} €
ID(x), and

, b
Clut [[H0ax} = [ Cuture) e
for all u in R.

Proof. Thlb is well- known but, for completeness, we sketch the proof: By

definition (cf. [Lu75]) f f(t)dX; is the limit in probability of the Riemann
sums:

Z f t(“) Xt;.”i)l)’
where, for each n, a = tén) < tgn) < < tSZ” = b is a subdivision of [a, ],
such that maxj=172,_“7n(t§.”) — t;ﬁ)l) — 0 as n — oco. Since (X;) has stationary,

independent increments, it follows that for any u in R,

Clut Ry} =Y C{f(t)ut (X = Xy ) }
j=1 '
Z (n) Ju i Xt<n> ) }

= > O ) - (157 — ),

<.
_

where, in the last equality, we used [5299, Theorem 7.10]. Since C), and f are
both continuous, it follows that

n b

Clut [; f@) X} = Tim > CL(f5)u) - (1 —67)) = / Cu(f(t)yu)dt,
=1 a

for any u in R. O

Proposition 2.6. Assume that 0 < a < b < o0, and let f: ]a,b[— R be a
continuous function. Let, further, (Xi)i>0 be a classical Lévy process, and put
uw=L{X1}. Assume that

Vu € R: /b |Cu(uf(t))]dt < oo,
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Then the stochastic integral f: f@t)dX, exists as the limit, in probability, of

the sequence (f;: f(t) dX})nen, where (a,) and (by) are arbitrary sequences
in ]a, b such that a, < by, for alln and a, \, a and b, /" b as n — oo.
Furthermore, L{f; f(t)dX:} € ID(*) and

b
clut [P ) dXt}:/ Co(uf(t))dt, (2.9)

for all uw in R.

Proof. Let (ay) and (b,,) be arbitrary sequences in ]a, b[, such that a,, <b,, for
all n and a, \, a and b, /" b as n — oo. Then, for each n, consider the sto-
chastic integral fab"’ f(t) dX;. Since the topology corresponding to convergence

in probability is complete, the convergence of the sequence ( f; F()dXy)nen
will follow, once we have verified that it is a Cauchy sequence. Towards this
end, note that whenever n > m we have that

/: f(t)dXt—/a:m f(t)dXt:/aim f(t)dXt+/b:n F(t)dX,,

so it suffices to show that
am bn
/ f(t) dXy 2,0 and / f(t)dXy 2,0, asn,m— oo.
an bm

By Lemma 2.4, this, in turn, will follow if we prove that
VuGR:C’{uiffn’"f(t)dXt}HO, as n,m — oo,
and
VueR: C{u § fbb;f f(t)dX;} — 0, as n,m — 00. (2.10)

But for n,m in N, m < n, it follows from Lemma 2.5 that

[C{ut [i™ F()dX}]| < /am |Cu(uf(t))|dt, (2.11)

n

and since f: |Cu(uf(t))|dt < oo, the right hand side of (2.11) tends to 0 as
n,m — oo. Statement (2.10) follows similarly.

To prove that lim,,_ f;: f(t)dX; does not depend on the choice of se-
quences (a,,) and (by,), let (a),) and (b)) be sequences in |a, b|, also satisfying
that a, < ¥/, for all n, and that a], \, a and b), /' b as n — co. We may
then, by an inductive argument, choose sequences n; < ng < ng < --- and
my < mg < mg--- of positive integers, such that

Uny > Apy > Gpy > Gy > oo, and by, <), <bp, <), <.
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Consider then the sequences (a)) and (b)) given by:

" o "o 1 - /Y
Agp_1 = Qny, Aop = Gy, and by, g = by, by = by, (k €N).

Then a) < b/ for all k, and a}] \, @ and b} /" b as k — oco. Thus, by the
argument given above, all of the following limits exist (in probability), and,
by “sub-sequence considerations”, they have to be equal:

bn bn -

nk
lim [ f(t)dX, = lim F(t)dX, = lim F(t) dX,
n— 00 " k—oo - k—oo all
4 ok
= lim [ f(t)dX;= lim F(t) dXx,
k—o0 a!’ k—oo al’
k 2k
b, "
= lim FOdX, = lim [ f(t)dX,,
—oeSay,, noe Jay,
as desired.

To verify, finally, the last statements of the proposition, let (a,) and (b,) be
sequences as above, so that, by definition, fab f(t)dX, = lim, o fab" ft)dX,
in probability. Since ZD(x) is closed under weak convergence, this implies

that L{ff f(t)dX:} € ID(x). To prove (2.9), we find next, using Gnedenko’s
theorem (cf. [GnKo68, §19, Theorem 1] and Lemma 2.5, that

Clut [P F)dx,} = tim Cfut [7 f(t)dx,}

by b
= Jim [ upw)ae= [ c,ture)

for any u in R, and where the last equality follows from the assumption that
f; |C,,(uf(t))] dt < oo. This concludes the proof. O

2.4 The Classical Lévy-Ité6 Decomposition

The Lévy-Ito decomposition represents a (classical) Lévy process (X;) as the
sum of two independent Lévy processes, the first of which is continuous (and
hence a Brownian motion) and the second of which is, loosely speaking, the
sum of the jumps of (X;). In order to rigorously describe the sum of jumps
part, one needs to introduce the notion of Poisson random measures. Be-
fore doing so, we introduce some notation: For any A in [0,00] we denote
by Poiss™()\) the (classical) Poisson distribution with mean \. In particular,
Poiss™(0) = dp and Poiss™(00) = 0.

Definition 2.7. Let (©,&,v) be a o-finite measure space and let (12, F, P) be
a probability space. A Poisson random measure on (©,E,v) and defined on
(2, F, P) is a mapping N: Ex 2 — [0, 0], satisfying the following conditions:
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(i) For each E in &, N(E) = N(E, ) is a random variable on (£2,F, P).

(ii) For each E in €, L{N(E)} = Poiss™ (v(E)).

(iii) If En, ..., E, are disjoint sets from &, then N(Ey),...,N(E,) are inde-
pendent random variables.

(iv) For each fized w in (2, the mapping E — N(E,w) is a (positive) measure
on &.

In the setting of Definition 2.7, the measure v is called the intensity mea-
sure for the Poisson random measure N. Let (©,&,v) be a o-finite measure
space, and let N be a Poisson random measure on it (defined on some prob-
ability space (£2,F, P)). Then for any &-measurable function f: @ — [0, o0],
we may, for all w in §2, consider the integral f@ f(0) N(df,w). We obtain, thus,
an everywhere defined mapping on 2, given by: w — [ f() N(df,w). This
observation is the starting point for the theory of integration with respect
to Poisson random measures, from which we shall need the following basic
properties:

Proposition 2.8. Let N be a Poisson random measure on the o-finite mea-
sure space (0,E,v), defined on the probability space (2, F, P).

(i) For any positive E-measurable function f: @ — [0,00], [ f(0) N(df) is
an F-measurable positive function, and

]E{/@f(é)N(dQ)}:/@fdy.

(i) If f is a real-valued function in LY(O,E,v), then f € LY(O,E,N(-,w)) for
almost all w in 2, [, f(0) N(df) € L' (2, F,P) and

]E{/@f(&)N(dG)}:/@fdy.

The proof of the above proposition follows the usual pattern, proving it first
for simple (positive) £-measurable functions and then, via an approximation
argument, obtaining the results in general. We shall adapt the same method
in developing integration theory with respect to free Poisson random measures
in Section 6.4 below.

We are now in a position to state the Lévy-Ito decomposition for classical
Lévy processes. We denote the Lebesgue measure on R by Leb.

Theorem 2.9 (Lévy-Ité Decomposition). Let (X;) be a classical (gen-
uine) Lévy process, defined on a probability space (£2,F, P), and let p be the
Lévy measure appearing in the generating triplet for L{X1}.

(i) Assume that f_ll |z] p(dx) < oo. Then (X;) has a representation in the
form:

X =yt +aB; + / x N(ds,dz), (2.12)
10,¢] xR
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where v € R, a > 0, (By) is a Brownian motion and N is a Poisson ran-
dom measure on (]0,00[xR,Leb ® p). Furthermore, the last two terms on
the right hand side of (2.12) are independent Lévy processes on (2, F, P).

(ii) Iff_l1 |z| p(dz) = oo, then we still have a decomposition like (2.12), but the
integral f]o t]X]RxN(ds,dm) no longer makes sense and has to be replaced
by the limat:

Y, =lim [/ xN(du, dx)f/ xLeb®p(du, dzx)
NOLJJ0,)x (R\[~e,e]) 10,41 % ([=1,1]\ [~ ¢,€])

The process (Y;) is, again, a Lévy process, which is independent of (By).

The symbol = in (2.12) means that the two random variables are equal

with probability 1 (a.s. stands for “almost surely”). The Poisson random mea-
sure N appearing in the right hand side of (2.12) is, specifically, given by

N(E,w) = #{s €]0,00[| (s,AX,(w)) € E},

for any Borel subset E of |0, co[x(R\{0}), and where AX; = X, —lim, ~s X,,.
Consequently, the integral in the right hand side of (2.12) is, indeed, the sum of
the jumps of X, until time ¢: f]O,t]xR z N(ds,dz) = > ., AX,. The condition
fil |z| p(dz) < oo ensures that this sum converges. Without that condition,

one has to consider the “compensated sums of jumps” given by the process
(Y). For a proof of Theorem 2.9 we refer to [Sa99].

2.5 Classes of Infinitely Divisible Probability Measures

In the following, we study, in various connections, dilations of Borel measures
by constants. If p is a Borel measure on R and c¢ is a non-zero real constant,
then the dilation of p by c¢ is the measure D.p given by

Dep(B) = p(c™'B),

for any Borel set B. Furthermore, we put Dop = dy (the Dirac measure at 0).
We shall also make use of terminology like

D.p(de) = p(c™"da),

whenever ¢ # 0. With this notation at hand, we now introduce several impor-
tant classes of infinitely divisible probability measures on R.

In classical probability theory, we have the following fundamental hierar-
chy:

;} CID(x) C P, (2.13)
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(i) P is the class of all probability measures on R.

(ii) ZD(x) is the class of infinitely divisible probability measures on R (as
defined above).

(iii) L(x) is the class of selfdecomposable probability measures on R, i.e.

€ L(x) <= Vee|0,1] Fue € P: p = Dep * pie.

(iv) B(x) is the Goldie-Steutel-Bondesson class, i.e. the smallest subclass of
ID(x), which contains all mixtures of positive and negative exponential
distributions® and is closed under convolution and weak limits.

(v) T (x) is the Thorin Class, i.e. the smallest subclass of ZD(x), which con-
tains all positive and negative Gamma distributions? and is closed under
convolution and weak limits.

(vi) R(x) is the class of tempered stable distributions, which will defined
below in terms of the Lévy-Khintchine representation.

(vil) S(x) is the class of stable probability measures on R, i.e.

p € S(x) < {¢(p) | ¥: R — R, increasing affine transformation}

is closed under convolution * .

(viii) G(x) is the class of Gaussian (or normal) distributions on R.

The classes of probability measures, defined above, are all of considerable
importance in classical probability and are of major applied interest. In par-
ticular the classes S(x) and L(x) have received a lot of attention. This is,
partly, explained by their characterizations as limit distributions of certain
types of sums of independent random variables. Briefly, the stable laws are
those that occur as limiting distributions for n — oo of affine transformations
of sums X7 +---+ X,, of independent identically distributed random variables
(subject to the assumption of uniform asymptotic neglibility). Dropping the
assumption of identical distribution one arrives at the class L(x). Finally, the
class ZD(x) of all infinitely divisible distributions consists of the limiting laws
for sums of independent random variables of the form X,,; +---4+ X, (again
subject to the assumption of uniform asymptotic neglibility).

An alternative characterization of selfdecomposability says that (the dis-
tribution of) a random variable Y is selfdecomposable if and only if for all ¢
in ]0, 1] the characteristic function f of ¥ can be factorised as

F(€) = F(eQ) fe(€), (2.14)

for some characteristic function f. (which then, as can be proved, necessarily
corresponds to an infinitely divisible random variable Y.). In other words,
considering Y, as independent of Y we have a representation in law

2 A negative exponential (resp. Gamma) distribution is of the form D_u, where
u is a positive exponential (resp. Gamma) distribution.
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d
Y=cY+Y,

(where the symbol 4 means that the random variables on the left and right
hand side have the same distribution). This latter formulation makes the idea
of selfdecomposability of immediate appeal from the viewpoint of mathemati-
cal modeling. Yet another key characterization is given by the following result
which was first proved by Wolfe in [Wo32] and later generalized and strength-
ened by Jurek and Verwaat ([JuVe83], cf. also Jurek and Mason, [JulMa93,
Theorem 3.6.6]): A random variable Y has law in £(x) if and only if Y has a
representation of the form

Yi/ et dX,, (2.15)
0

where X; is a Lévy process satisfying E{log(1 + |X1|)} < oo. The process
X = (Xy)i>0 is termed the background driving Lévy process or the BDLP
corresponding to Y.

There is a very extensive literature on the theory and applications of stable
laws. A standard reference for the theoretical properties is [SaTa94], but see
also [Fe71] and [BaMiReO1]. In comparison, work on selfdecomposability has
up till recently been somewhat limited. However, a comprehensive account of
the theoretical aspects of selfdecomposability, and indeed of infinite divisibility
in general, is now available in [S299]. Applications of selfdecomposability are
discussed, inter alia, in [BrReTw82], [Ba98], [BaShOla] and [BaShO1b].

The class R(*), its d-dimensional version R%(*), and the associated Lévy
processes and Ornstein-Uhlenbeck type processes were introduced and stud-
ied extensively by Rosinski (see [Ros04]), following earlier works by other
authors on special instances of this kind of stochastic objects (see references
in [Ros04]). These processes are of considerable interest as they exhibit sta-
ble like behaviour over short time spans and - in the Lévy process case -
Gaussian behaviour for long lags. That paper also develops powerful series
representations of shot noise type for the processes.

By ZD™ (%) we denote the class of infinitely divisible probability measures,
which are concentrated on [0, oo[. The classes ST (), R (x), 7 (x), BT (x) and
Lt (*) are defined similarly. The class 7+ (), in particular, is the class of
measures which was originally studied by O. Thorin in [Th77]. He introduced
it as the smallest subclass of ZD(x), which contains the Gamma distributions
and is closed under convolution and weak limits. This group of distributions is
also referred to as generalized gamma convolutions and have been extensively
studied by Bondesson in [B092]. (It is noteworthy, in the present context, that
Bondesson uses Pick functions, which are essentially Cauchy transforms, as
a main tool in his investigations. The Cauchy transform also occur as a key
tool in the study of free infinite divisibility; see Section 4.4).

Example 2.10. An important class of generalized Gamma convolutions are the
generalized inverse Gaussian distributions: Assume that A in R and ~,d in
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[0, oo[ satisfy the conditions: A <0=§ >0, A=0= 7,0 >0and A > 0=
~ > 0. Then the generalized inverse Gaussian distribution GIG(\,d,7) is the
distribution on Ry with density (w.r.t. Lebesgue measure) given by

g(t; N, 6,7v) = Mt)‘_lexp{ — (T 420}, t>0
T 2K, (07) 2 ’ -7
where K is the modified Bessel function of the third kind and with index
A. For all ;0,7 (subject to the above restrictions) GIG(},d,7) belongs to
T (x), and it is not stable unless A = —% and v = 0. For special choices of
the parameters, one obtains the gamma distributions (and hence the exponen-
tial and y? distributions), the inverse Gaussian distributions, the reciprocal
inverse Gaussian distributions® and the reciprocal gamma distributions.

Example 2.11. A particularly important group of examples of selfdecompos-
able laws, supported on the whole real line, are the marginal laws of subordi-
nated Brownian motion with drift, when the subordinator process is generated
by one of the generalized gamma convolutions. The induced selfdecomposabil-
ity of the marginals follows from a result due to Sato (cf. [Sa00]).

We introduce next some notation that will be convenient in Section 3.3
below. There, we shall also consider translations of the measures in the classes
T+(x), LT(¥) and D™ (). For a real constant ¢, we consider the mapping
7.: R — R given by

Te(r) =+, (x € R),

i.e. 7. is translation by c. For a Borel measure o on R, we may then consider
the translated measure 7.(u) given by

TC(H)(B) = M(B - 0)7

for any Borel set B in R. Note, in particular, that if p is infinitely divisi-
ble with characteristic triplet (a,p,n), then 7.(u) is infinitely divisible with
characteristic triplet (a, p,n + ¢).

Definition 2.12. We introduce the following notation:
IDS (%) = {u € ID(x) | 3c € R: 7o(p) € IDT (%)}
L) ={peID)|TceR: 1.(u) € LT (%)} =ID N L(%)

T (%) ={n € ID(x) | e € R: 7.(u) € TT (%)} = IDF NT ().

3The inverse Gaussian distributions and the reciprocal inverse Gaussian distribu-
tions are, respectively, the first and the last passage time distributions to a constant
level by a Brownian motion with drift.
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Remark 2.13. The probability measures in ZD™ (x) are characterized among
the measures in ZD(x) as those with characteristic triplets in the form (0, p,7),
where p is concentrated on [0, col, f[o jytp(dt) <ooandn > f[o jy to(dt) (cf.

[S299, Theorem 24.11]). Consequently, the class D () can be characterized
as that of measures in ZD(x) with generating triplets in the form (0,7, p),
where p is concentrated on [0, co[ and f[o 1 tp(dt) < oo.

Characterization in Terms of Lévy Measures

We shall say that a nonnegative function k with domain R\ {0} is monotone
on R\ {0} if % is increasing on (—o0,0) and decreasing on (0,00). And we say
that k is completely monotone on R\ {0} if k is of the form

J: v(ds), fort>0
k0= {foooo —ts (ds) fort <0 (2.16)

for some Borel measure v on R\ {0}. Note in this case that v is necessarily a
Radon measure on R\ {0}. Indeed, for any compact subset K of ]0, co[, we
may consider the strictly positive number m := inf,cx e °. Then,

) <m~ / v(ds) <m~ / =m k(1) < 0.

Similarly, v(K) < oo for any compact subset of K of | — 00, 0].

With the notation just introduced, we can now state simple characteriza-
tions of the Lévy measures of each of the classes S (), 7 (%), R (%), L (x), B (x)
as follows. In all cases the Lévy measure has a density r of the form

r(t) = cpt™4 "k (1), for ¢ > 0, (2.17)
et k(t), fort<O0, )

where a4, a_,cq,c_ are non-negative constants and where k£ > 0 is monotone
on R\ {0}.

e The Lévy measures of S () are characterized by having densities 7 of the
form (2.17) with ax = 1+ «, a € ]0,2[, and k constant on R and on
R<g.

e The Lévy measures of R (x) are characterized by having densities 7 of the
form (2.17) with ax = 1 4+ «, a € ]0,2[, and k completely monotone on
R\ {0} with k(0+) = k(0—) = 1.

e The Lévy measures of 7 (x) are characterized by having densities r of the
form (2.17) with ax = 1 and k completely monotone on R\ {0}.

e The Lévy measures of L (x) are characterized by having densities r of the
form (2.17) with ay = 1 and k monotone on R\ {0}.

e The Lévy measures of B () are characterized by having densities 7 of the
form (2.17) with ay = 0 and k completely monotone on R\ {0}.

In the case of S (%) and £ () these characterizations are well known, see for
instance [Sa99]. For 7 (%), R (*) and B (*) we indicate the proofs in Section 3.
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3 Upsilon Mappings

The term Upsilon mappings is used to indicate a class of one-to-one regu-
larizing mappings from the set of Lévy measures into itself or, equivalently,
from the set of infinitely divisible distributions into itself. They are defined as
deterministic integrals but have a third interpretation in terms of stochastic
integrals with respect to Lévy processes. In addition to the regularizing effect,
the mappings have simple relations to the classes of infinitely divisible laws
discussed in the foregoing section. Some extensions to multivariate settings
are briefly discussed at the end of the section.

3.1 The Mapping Yy

Let p be a Borel measure on R, and consider the family (D,.p),~o of Borel
measures on R. Assume that p has density r w.r.t. some o-finite Borel measure
o on R: p(dt) = r(t) o(dt). Then (Dyp).>o is a Markov kernel, i.e. for any
Borel subset B of R, the mapping x — D, p(B) is Borel measurable. Indeed,
for any x in ]0, co[ we have

D.p(B) = pla ™ B) = [ Loap(t)rie)a(dt) = [ La(at)r(t) ofct).
R R
Since the function (¢,z) — 1p(tx)r(t) is a Borel function of two variables,
and since o is o-finite, it follows from Tonelli’s theorem that the function
x— [p 1p(at)r(t) o(dt) is a Borel function, as claimed.
Assume now that p is Borel measure on R, which has a density r w.r.t.
some o-finite Borel measure on R. Then the above considerations allow us to
define a new Borel measure p on R by:

p= /Ooo(Dxp)em dex, (3.1)

or more precisely:
pB) = [ Dap(Bre
0

for any Borel subset B of R. In the following we usually assume that p is a
o-finite, although many of the results are actually valid in the slightly more
general situation, where p is only assumed to have a (possibly infinite) density
w.r.t. a o-finite measure. In fact, we are mainly interested in the case where
p is a Lévy measure (recall that Lévy measures are automatically o-finite).

Definition 3.1. Let MM(R) denote the class of all positive Borel measure on R
and let My, (R) denote the subclass of all Lévy measure on R. We then define
a mapping 1o: M (R) — M(R) by

To(o) = [ (Dupletda, (e MR
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As we shall see at the end of this section, the range of 7y is actually a
genuine subset of M, (R) (cf. Corollary 3.10 below).

In the following we consider further, for a measure p on R, the transfor-
mation of pjry (o} by the mapping z — z7*: R\ {0} — R\ {0} (here pr\ {0}
denotes the restriction of p to R\ {0}). The transformed measure will be de-
noted by w and occasionally also by Jx Note that w is o-finite if p is, and that

p is a Lévy measure if and only if p({0}) = 0 and w satisfies the property:

/min{l,s‘Q}w(ds) < 0. (3.2)
R

Theorem 3.2. Let p be a o-finite Borel measure on R, and consider the Borel
function 7: R\ {0} — [0, 00], given by

f]o,oo[ se”t w(ds), ift >0,

r(t) =
Jiosoopsle™ w(ds), ift <0,

(3.3)

where w is the transformation of pr\{oy by the mapping x — z~': R\ {0} —

R\ {0}.

Then the measure p, defined in (3.1), is given by:
p(dt) = p({0})do(dt) + 7(t) dt.
Proof. We have to show that

5(B) = p({0})60(B) + /B L (3.4)

for any Borel set B of R. Clearly, it suffices to verify (3.4) in the two cases
B C[0,00] and B C ] — 00,0]. If B C [0, 00[, we find that

e = [ ( [, 1) Doplan)e i
_ /OOO (/[0700[ p(sz) p(ds) ) da
_ /[o,oo[ ( /0 T p(sp)et dr) p(ds)

Using, for s > 0, the change of variable u = sz, we find that

5(B) = (13(0) /OOO emdx)p({O})—F/]OOO[(/OOOIB(u)e“/551du) p(ds)
= pl{0)3u(5) + [ Latu) /] e o ) du

— pl{O)du(B) + [ " 1) /] T las) du,
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as desired. The case B C ] — 00, 0] is proved similarly or by applying, what
we have just established, to the set —B and the measure D_qp. O

Corollary 3.3. Let p be a o-finite Borel measure on R and consider the mea-
sure p given by (3.1). Then

0, ift € R\ {0},

““”:{mwb,ﬁt:u

Corollary 3.4. Let r: R — [0, 00] be a non-negative Borel function and let p
be the measure on R with density r w.r.t. Lebesque measure: p(dt) = r(t) dt.
Consider further the measure p given by (3.1). Then p is absolutely continuous
w.r.t. Lebesque measure and the density, 7, is given by

Iy e dy,  ift >0,
f_ooo —y~lr(y~He Wdy, ift<0.

Proof. This follows immediately from Theorem 3.2 together with the fact that
the measure w has density

F(t) =

5 3727"(3*1), (s e R\ {0}),
w.r.t. Lebesgue measure. O

Corollary 3.5. Let p be a Lévy measure on R. Then the measure Yo(p) is
absolutely continuous w.r.t. Lebesque measure. The density, 7, is given by
(3.3) and is a C*°-function on R\ {0}.

Proof. We only have to verify that 7 is a C'°-function on R\ {0}. But this
follows from the usual theorem on differentiation under the integral sign, since,
by (3.2)

/ sPe” ¥ w(ds) < co and / |s|Pe™ w(ds) < oo,
10,00][ ]—00,0[

for any ¢ in ]0, oo and any p in N. O

Proposition 3.6. Let p be a o-finite measure on R, let p be the measure given
by (3.1) and let w be the transformation of pr\ (0} under the mapping t — t= 1.
We then have

mwwn=ﬁwa“w®» (t €10, 00, (3.5)
and

0
p(]—oo,t])z/ e u(ds),  (te]—o0,0]) (3.6)

— 00
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Proof. Using Theorem 3.2 we find, for ¢t > 0, that

p([t, ]) = /too (/]o,oo[seUSW(dS)) du = /]o,oo[ (/too e “s du) w(ds)
_ /]O’oo[ (/too e dr) w(ds) = /]O’W[etsw(ds),

where we have used the change of variable = us. Formula (3.6) is proved
similarly. 0O

Corollary 3.7. The mapping To: ML (R) — M(R) is injective.

Proof. Suppose p € Mz (R) and let w be the transformation of pg\ (0} be
the mapping ¢ +— t~'. Let, further, w, and w_ denote the restrictions of w
to ]0, 00[ and | — oo, 0, respectively. By (3.2) it follows then that the Laplace
transform for w is well-defined on all of |0, co[. Furthermore, (3.5) shows that
this Laplace transform is uniquely determined by p. Hence, by uniqueness of
Laplace transforms (cf. [Fe71, Theorem la, Chapter XIIL.1]), w, is uniquely
determined by p. Arguing similarly for the measure D_jw_, it follows that
D_jw_ (and hence w_) is uniquely determined by 5. Altogether, w (and hence
p) is uniquely determined by p. a

Proposition 3.8. Let p be a o-finite measure on R and let p be the measure
given by (3.1). Then for any p in [0, 00[, we have that

[t atan = rw+ 1) [ e pla).
R R
In particular, the p’th moment of p and p exist simultaneously, in which case
/ tPp(dt)=I(p+1) / tP p(dt). (3.7)
R R

Proof. Let p from [0, oo be given. Then

/R|t”ﬁ(dt)/ooo (/prmp(dt))e*l dx/:o (/R|m|pp(dt))e*mdx

= [ ([ e an) tan = o+ 1) [ 14 ot

If the integrals above are finite, we can perform the same calculation without
taking absolute values, and this establishes (3.7). O

Proposition 3.9. Let p be a o-finite Borel measure on R and let p be the
measure given by (3.1). We then have
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/ 1 p(dt) = / =1/t p(d) (3.8)
R\[-1,1) »\(0)
/ t?ﬁ(dt):/ 22 — o=V (1 4 2t 4+ 22) p(dt).  (3.9)
1) ®\(0)
In particular
/min{u?}ﬁ(dt):/ 22(1— V(7 + 1)) p(dr),  (3.10)
R R\{0}
and consequently

/min{l,tz}ﬁ(dt) < oo = /min{l,tz}p(dt) < . (3.11)
R R

Proof. We note first that

/R\[M Loldt) = /000 /1]1oo (It]) w(dt))e*xdx
| ([ tneeieab ptan)e= as
/R o /1 » ””dz) (dt)

[ e
R\{0}

which proves (3.8). Regarding (3.9) we find that

/[_1,1] £ p(dr) = /OOO ( / o) ([H)2 Dap(dt) o™ de
/ /1[0 y([ta)t*z p(dt)) “Tdg

1/t
/ / - daz)t2 p(dt)
R\{0}

/ —e M2 4 21t~ + 2))12 p(dt)
R\{0}

(=)

/ eI 4 9t + 242) p(d),
R\{0}



Classical and Free Infinite Divisibilityand Lévy Processes 53

as claimed. Combining (3.8) and (3.9), we immediately get (3.10). To deduce
finally (3.11), note first that for any positive u, we have by second order Taylor
expansion

2 2
E(lfeﬂ(uﬂ)) - 22 (e“—u+1)=e"", (3.12)

for some number ¢ in ]0, u[. It follows thus that
Vi e R\ {0}: 0 < 262(1 — e VI(Je|71 +1)) <1, (3.13)

and from the upper bound together with (3.10), the implication “<” in (3.11)
follows readily. Regarding the converse implication, note that (3.12) also shows
that

lim 26%(1—e Yt + 1)) =1,

[t|—o0

and together with the lower bound in (3.13), this implies that

inf  2t2(1—e M1 +1 0. 3.14
ety 20 (L= e QT+ 1) > (3.14)

Note also that

lim 2(1 — e VIt~ + 1)) = 2 lim (1-e(ut1)) =2,

so that
inf  2(1—e VI(t|7M 4+ 1)) > 0. 3.15
et oy 20 7T T D) (319
Combining (3.14),(3.15) and (3.10), the implication “=" in (3.11) follows.
This completes the proof. 0

Corollary 3.10. For any Lévy measure p on R, Yo(p) is again a Lévy measure
on R. Moreover, a Lévy measure v on R is in the range of 1y if and only if
the function F,: R\ {0} — [0, 00[ given by

~Ju(] —oo,t]), ift<0,
F(t) = {U([t,oo[)7 if t >0,

is completely monotone (cf. (2.16)).

Proof. Tt follows immediately from (3.11) that 7°(p) is a Lévy measure if p is.

Regarding the second statement of the corollary, we already saw in Propo-
sition 3.6 that Fy(,) is completely monotone for any Lévy measure p on R.
Assume conversely that v is a Lévy measure on R, such that F, is completely
monotone, i.e.

o(ft, oof) = /Oooe_tsw(ds), (t €10, 50]),
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and 0
v(] —o0,t]) = / e " w(ds), (te]—o0,0]).
— 00

for some Radon measure w on R\ {0}. Now let p be the transformation of
w by the mapping ¢t — t=1: R\ {0} — R\ {0}. Then p is clearly a Radon
measure on R\ {0}, too. Setting p({0}) = 0, we may thus consider p as a
o-finite measure on R. Applying then Proposition 3.6 to p, it follows that p
and v coincide on all intervals in the form | — oo, —t] or [¢, 00| for ¢ > 0. Since
also p({0} = 0 = v({0}) by Corollary 2.3, we conclude that p = v. Combining
this with formula (3.11), it follows finally that p is a Lévy measure and that
v=7p=To(p) o

Proposition 3.11. Let p be a o-finite measure concentrated on [0, 00[ and let
p be the measure given by (3.1). We then have

/ 1p5(dt) = / eVt p(dt), (3.16)
11,00 10,00[
/ tp(dt) = / t(1 — ety — eVt p(dr). (3.17)
[0,1] 10,00]
In particular
/ min{1, ¢} p(dt) = / t(1 — e 1/t) p(dt), (3.18)
[0,00[ 10,00
and therefore
/ min{1,t} p(dt) < oo <= min{1,t} p(dt) < oco. (3.19)
[0,00[ [0,00[

Proof. Note first that (3.18) follows immediately from (3.16) and (3.17). To
prove (3.16), note that by definition of p, we have

/]1,00[ L A(de) = /00" (/[O,OO[ 11,00/ (t) Dxp(df))e‘w da
B /0°° (/[O,OO[ Lj1,c0f(t2) p(dt))e‘”” da
= /]0700[ (/1/0: e " dx) p(dt)

= / eVt p(at).
10,00

Regarding (3.17), we find similarly that
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/[071] £p(dt) = /O h ( /[071] 1 Dop(dt) o~ da
= /Ooo (/[o,oo[ml[o’”(m) p(dt))e_z dzx
ve
:/]o,oo[t(/o xe dx) p(dt)
=/ t(1—e V(G +1)) p(dt)
]0,00]

:/] e ety o1/t p(dp).
0,00

Finally, (3.19) follows from (3.18) by noting that

e/t 1
0<t(l—e V) = YT <1, whenever ¢t > 0,
and that
lim(l —e YY) =1 = lim ¢(1 —e /%),
t\.0 t—o0
This concludes the proof. ]

3.2 The Mapping I
We now extend the mapping 1 to a mapping 7" from ZD(x) into ZD(x).

Definition 3.12. For any p in ZD(x), with characteristic triplet (a, p,n), we
take Y (1) to be the element of TD(x) whose characteristic triplet is (2a, p, 1)
where

i=n+ [ ([0 =1 ®) Daptan)e e 20)

and
5= Tolp) = /0 (Dap)e*da. (3.21)

Note that it is an immediate consequence of Proposition 3.9 that the mea-
sure p in Definition 3.12 is indeed a Lévy measure. We verify next that the
integral in (3.20) is well-defined.

Lemma 3.13. Let p be a Lévy measure on R. Then for any x in ]0,00[, we
have that

A Juz - (1117 (uz) — 1y 4y (ua)) | p(du) < oc.



56 Ole E. Barndorff-Nielsen and Steen Thorbjgrnsen

Furthermore,

/OOO ( /R - (11 (u2) = 1 e (u2)) | pldu) e~ da < oo.

Proof. Note first that for any « in ]0, oo[ we have that

[l () = 1 () | )

[ e (1) = 1y @) )
R

z foful - 11 gy o1,y (w) p(du), if 2 <1,

‘TIIR |u\ —1,1\ m—l’z—l](u) p(du), if x > 1.

Note then that whenever 0 < € < K, we have that
[u| - 11— g K]\ [—e,e] (u) < min{K, % } < max{K,e '} min{u?, 1},

for any u in R. Hence, if 0 < < 1, we find that
x/RW' (Hmamte1) () = Loy (@) | p(du)

< rmax{z 1}/Rmin{u2, 1} p(du) = /]Rmin{u{ 1} p(du) < o0
since p is a Lévy measure. Similarly, if x > 1,
x/RW (U1 (@) = Lo oy ()| p(du)
< xmax{l,x}/ﬂ@min{ug, 1} p(du) = xz/Rmin{u2, 1} p(du) < oo
Altogether, we find that

/ / |ugc —1y(ux) = T g (um )’p du)) “Tdx
1 o]
S/min{uQ,l}p(du) . (/ e ” dx—i—/ rie™" dx) < 00,
R 0 1

as asserted. O

Remark 3.14. In connection with (3.20), note that it follows from Lemma 3.13
above that the integral
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/0OC (/Ru(l[_m] (u) = 1—g,2)(w)) Da;p(du))e—w dz,

is well-defined. Indeed,
/ (/‘u(l[,l,l] (u) = L_g (1)) pr(du))e_x dz
0 R

) /000 ([ bt (00) = )] o))

Having established that the definition of 7" is meaningful, we prove next a
key formula for the cumulant transform of 7°(x) (Theorem 3.17 below). From
that formula we derive subsequently a number of important properties of 7.
We start with the following technical result.

Lemma 3.15. Let p be a Lévy measure on R. Then for any number ¢ in
] — 00, 0], we have that

/ (/ ‘eigtw =1 —iCtwl_q 5 (t)| p(dt))e*‘” dz < oo.
0 R

Proof. Let ¢ from | — 00,0[ and z in [0, co[ be given. Note first that

/ |ei§m =1 —iCtal_q q(t)| p(dt) = / |ei<t‘” — 1| p(dt)
R\[—1,1]

R\[—1,1]

<2 / min{1,#%}p(dt)
R\[—1,1]

< 2/Rmin{1,t2}p(dt).

To estimate fil lei¢t* — 1 —iCtx| p(dt), we note that for any real number ¢, it
follows by standard second order Taylor expansion that

, 1
el —1 —iCta| < —2(@595)2,

7

and hence

/1 el¢t" — 1 —ita| p(dt) < i(ga:)Q /1 2 p(dt)
-1 P V2 1 P

S
< J5(Ca)? [ min{1.e} ).

Altogether, we find that for any number « in [0, oof,
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iCta : 1 2 - 2
/}R‘eC — 1 —iCtal_q yj(t)] p(dt) < <2+ ﬁ((:x) )/len{l,t }p(dt),

and therefore

/000 (/R |eiCtz —1—iCtel_y (t)| p(dt))e*”ﬁ da

< /Rmin{Ltz}p(dt) /OOO (2 + %(Cmf)e’x dz < o0,

as desired. O

Theorem 3.16. Let p be a measure in ID(x) with characteristic triplet
(a,p,m). Then the cumulant function of (1) is representable as

CT(H)(O =in¢ — aC2 +/]R (1%@ -1- i<t1[71,1] (t)) p(dt), (3.22)

for any ¢ in R.
Proof. Recall first that for any z € C with Rez < 1 we have

1 o0
T = / e*Te  *dux,
— 5 0

implying that for ¢ real with ( <0

1
1—ict

1 —iCtl_q q(t) = / (P — 1 —iCtal_y () e “dz. (3.23)
0

Now, let p from ZD(x) be given and let (a, p,n) be the characteristic triplet
for p. Then by the above calculation

/R<1 —liCt =ity (t)) p(dt)

= /R (/OO (0" — 1 —iCtalj_q y(t))e " dx)p(dt)

0

= /OOO (/R (eiC“ —1—iCul|_; 4 (u)) p(x_ldu))e_x dx

= /OOO (/]R (eicu —1—iCul{_yqj(u)) p(sc_ldu))e_‘” dx
+i¢ /000 (-/Ru(l[_m] (u) = 1j—g,2)(w)) p(x_ldu))e_w dz

_ /R (e — 1 — iCul_ yy(w)) 5(du)
+i¢ /000 </Ru(1[,171] (u) = 1—p 21 (w)) p(m_ldu)>e_”” dz,
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where we have changed the order of integration in accordance with Lemma 3.15.
Comparing the above calculation with Definition 3.12, the theorem follows
readily. O

Theorem 3.17. For any u in ID(*) we have

Crw(z) = /0 Cu(zx)e™* da, (z € R).

Proof. Let (a, p,n) be the characteristic triplet for . For arbitrary z in R, we
then have

/ Cu(zx)e " dz
0
= / (inzx — —az’z? +/ (e — 1 —itzwl_q,1)(t)) p(dt))e_“c dz
0 2 R ’

o0 1 oo
= inz/ ze ¥ dr — —az? / z?e % dx
0 2 0

+/R (/Ooo (%" — 1 —itzal_y y(t))e " dx) p(dt)

1
—imy — g2 S
=inz —az —l—/R (1 e 1 —iztl_y (t)) p(dt),

(3.24)

where the last equality uses (3.23). According to Theorem 3.16, the resulting
expression in (3.24) equals Cy(,(2), and the theorem follows. i

Based on Theorem 3.17 we establish next a number of interesting proper-
ties for 7.

Proposition 3.18. The mapping T: TD(x) — ID(x) has the following prop-
erties:

(1) T is injective.

(ii) For any measures p,v in ID(x), T(p*xv) =T (u) * T (v).

(iii) For any measure p in ZD(x) and any constant ¢ in R, T (D.p) = DT ().
(iv) For any constant ¢ in R, T(5.) = d..

(v) T is continuous w.r.t. weak convergence®.

Proof. (i) This is an immediate consequence of the definition of 7" together
with the injectivity of 1y (cf. Corollary 3.7).

(ii) Suppose p1, 2 € ID(x). Then for any z in R we have by Proposi-
tion 3.17

4In fact, it can be proved that 7" is a homeomorphism onto its range with respect
to weak convergence; see [BaTh04c].
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oo oo
Cruyrps)(2) = / Chiysps (z)e™ " da = / (C’m(zx) + C’,Lz(za:))e_z dx
0 0

= Or(u1)(2) + Cr(u2) (2) = Cr(un)sr(ue) (2),
which verifies statement (ii)
(iii) Suppose p € ID(x) and ¢ € R. Then for any z in R,
Crp.p (2) :/ Cp,u(zx)e™ " da :/ Culezx)e ™ da
0 0

= Cru)(cz) = Cp,r(u)(2),

which verifies (iii).

(iv) Let ¢ from R be given. For z in R we then have

o0 o0
Criay(2) = / Cs, (zx)e ™ da = / iczae™ do = icz = Cys_(2),
0 0

which verifies (iv).

(v) Although we might give a direct proof of (v) at the present stage
(see the proof of Theorem 3.40), we postpone the proof to Section 5.3, where
we can give an easy argument based on the continuity of the Bercovici-Pata

bijection A (introduced in Section 5.1) and the connection between 7" and A
(see Section 5.2).

Corollary 3.19. The mapping T': ID(x) — ID(x) preserves stability and
selfdecomposability. More precisely, we have

T(S(x)) =8(x) and T(L(x)) C L(x).
Proof. Suppose u € S(x) and that ¢,¢ > 0 and d,d’ € R. Then
(DCH’ * 5(1) * (Dc/lj, * 5(1’) = DC”,U’ * 5d”;

for suitable ¢’ in ]0, 00[ and d” in R. Using now (ii)-(iv) of Proposition 3.18,
we find that

(DY (1) # 64) % (DX (1) % 60 ) = (T (Dep) ¥ T (8a)) * (Y(Derpr) * T (6ar))
= T(Dop * 84) % V(Do % S
=Y ((Dep ba) * (Der o * 8ar))
= V(D 50))
= DT (p) * b,

which shows that 1'(11) € S(x). This verifies the inclusion 7(S(x)) C S(x). To
prove the converse inclusion, we use Corollary 3.4 (the following argument, in
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fact, also shows the inclusion just verified above). As described in Section 2.5,
the stable laws are characterized by having Lévy measures in the form r(t) dt,
where
t~t=o fort >0,
r(t) = cy 1 or
c_|t|7t7e, fort <0,

with a € ]0,2[ and ¢4, c_ > 0. Using Corollary 3.4, it follows then that for u
in S(x), the Lévy measure for 7'(u) takes the form 7(¢) d¢, with 7(¢) given by

F(t) = J vty e v dy, ift >0,
B f?oo —y ir(y He Wdy, ift<0,
(3.25)
e r(+ oyttt ift >0,
e A+ o), ift <0,
where the second equality follows by a standard calculation. Formula (3.25)
shows, in particular, that any measure in S(*) is the image by 7" of another
measure in S(x).
Assume next that g € L(x). Then for any ¢ in |0, 1[, there exists a measure
e in ZD(x), such that u = D.p * p.. Using now (ii)-(iii) of Proposition 3.18,
we find that

T(p) =T (Depx pre) = T(Dep) * T(pe) = DT (1) ¥ T (pe),
which shows that 7'(u) € L(x). O

Remark 3.20. By the definition of 7" and Corollary 3.5 it follows that the Lévy
measure for any probability measure in the range 7 (ZD(x)) of 7" has a C*°
density w.r.t. Lebesgue measure. This implies that the mapping 7": ZD(x) —
ID(x) is not surjective. In particular it is apparent that the (classical) Poisson
distributions are not in the image of 7", since the characteristic triplet for the
Poisson distribution with mean ¢ > 0 is (0,¢d1,¢). In [BaMaSa04], it was
proved that the full range of 7" is the Goldie-Steutel-Bondesson class B(x). In
Theorem 3.27 below, we show that 1V (L(x)) = 7 ().

We end this section with some results on properties of distributions that
are preserved by the mapping 7". The first of these results is an immediate
consequence of Proposition 3.11.

Corollary 3.21. Let u be a measure in TD(x). Then p € ITDF (%) if and only
if T(n) € ID} (+).

Proof. For a measure p in ZD(x) with Lévy measure p, 7'(11) has Lévy measure
Yo(p) = p. Hence, the corollary follows immediately from formula (3.19) and
the characterization of D (%) given in Remark 2.13. O

The next result shows that the mapping 1" has the same property as that
of Ty exhibited in Proposition 3.8.
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Proposition 3.22. For any measure p in ID(x) and any positive number p,
we have
i has p’th moment <= 1(u) has p’th moment.

Proof. Let i in ZD(x) be given and put v = 7" (u). Let (a, p,n) be the charac-
teristic triplet for u and (2a, p,7) the characteristic triplet for v (in particular
p = Tu(p). Now by [5a99, Corollary 25.8] we have

/ |z]P p(de) < oo <= / ||P p(dx) < oo, (3.26)
R [~1,1]¢

and

/R\x|p v(dr) < oo <= - |z p(dz) < oo. (3.27)

Note next that

[ abatan = [ ([ P Dysn))e g
[—1,1]¢ 0 [—1,1]¢

= /Ooo (/R lzy P11 13 (2y) p(d:z:))efy dy (3.28)

= [ar(f : ye™ dy) pld),

where we interpret flo/qu yPe Y dy as 0, when x = 0.
Assume now that p has p’th moment. Then by (3.26), f[71 15e ||P p(dx) <
00, and by (3.28)

[ taPatas)
[_171]C

< /[_171] |9[:|p(/1OO yPe Y dy) p(dx) + I'(p+ 1)/ |z? p(dz).

/|$‘ [_111]C

By (3.27), it remains thus to show that

/ |x|p(/ yPe™Y dy) p(dx) < 0. (3.29)
[(-1,1] /x|

If p > 2, then this is obvious:
[ee]
[oel(f weray) ot < 1oy [ el plde) < o,
(-1,1] /x| (-1,1]

since p is a Lévy measure. For p in ]0,2[ we note first that for any numbers
t,q in ]0, 00[ we have
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o0 yp+q o0
/ yretdy = / e s / yP eV dy <t (p + g+ 1).
t t t

Using this with ¢t = 1/|z|, we find for any positive ¢ that
[ owal([ rera) o <Pty [l pdo).
(-1,1] /]| (—1,1]
Choosing ¢ = 2 — p we find as desired that

[oar([ weran)pan <re) [ o pldo) < o,
[-1.1] 1/|| [-1,1]

since p is a Lévy measure.

Assume conversely that v = 7°(u) has p’th moment. Then by (3.27), we
have f[—Ll]C |z|P p(dx) < oo, and by (3.26) we have to show that f[—Ll]C lz|? p
(dz) < oo. For this, note that whenever |z| > 1 we have

/ yPe Y dy > / yPe ¥ dy €10, 00].
1/ 1
Setting ¢(p) = floo yPe ¥ dy and using (3.28) we find thus that

1 oo
z|P p(dz g—/ x[? / yPe YV dy ) p(dx
/[—1,1]C| "ot c(p) [—171]C| | ( 1/]a| ) )

1 / .
< — z|P p(dx) < oo,
c(p) [—1,1]¢ ol p(dz)

as desired. 0O

3.3 Relations between Yy, and the Classes L(x), T (*)

In this section we establish a close connection between the mapping 7" and
the relationship between the classes 7 (x) and L(x). More precisely, we prove
that 1'(L(x)) = 7 (%) and also that (L} (x)) = 7.7 (x). We consider the latter
equality first.

The Positive Thorin Class

We start by establishing the following technical result on the connection be-
tween complete monotonicity and Lévy densities for measures in ZD™ (x).

Lemma 3.23. Let v be a Borel measure on [0, 00[ such that

Vit > 0: / e " u(ds) < oo,
[0,00[
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and note that v is necessarily a Radon measure. Let q: |0, 00 — [0, 0o[ be the
function given by:

1
gty = 1 / e u(ds),  (t>0).
t
[0,00[
Then q satisfies the condition

(oo}
/ min{1,t}q(t) dt < oo, (3.30)
0
if and only if v satisfies the following three conditions:

(a) v({0}) =0,
(b) fig,1j Nog ()| v(dt) < oo,

(c) f[l’m[ 1 v(dt) < oo

Proof. We note first that

1
/ tq(t)dt = / / v(ds)dt = / (/ e ts dt) v(ds)
0 o, 00[ [0,00[ *JO

_V({O})—‘r/]o [%(l—e S)y(ds).

(3.31)

Note next that

/ /100 i /[0 o “v(ds)dt = /[Om[ (/:O lets dt) v(ds)
/[O,OO[ (/ tdt) v(ds) = /OOO 1e‘t</[0,t] ll/(ds)) dt
[ 1o

Assume now that (3.30) is satisfied. It follows then from (3.32) that

[}

(3.32)

50 > /1 Loty ([0, ]) dt > e—l/1 Ly((0, 1)) dt.

Here, by partial (Stieltjes) integration,

1

/O1 Ly([0,4]) dt = [log(ﬁ)ll([()ﬂf])}0 - /]0 : log(t) v(dt)

= lim [ Hog (0w ([0,1) + /]] [ log(8)| »(ds),
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so we may conclude that

lim | log(¢)|v([0,¢]) < 0o and / |log(t)|v(dt) < oo,
t\.0 10,1]

and this implies that (a) and (b) are satisfied. Regarding (c), note that it
follows from (3.30) and (3.31) that

oo>/01tq(t)dtz/[m[;<1—e—8)y(ds)2(1—e—1)/ 1,(ds),

[1,00]

and hence (c) follows.
Assume conversely that v satisfies conditions (a), (b) and (c). Then by
(3.31) we have

1
/ tq(t) dt = / 11—e%)v(ds) < / 1v(ds) + / Lu(ds),
0 10,00][ 10,1] [1,00[

where we have used that (1 —e~*) <1 for all positive s. Thus, by (b) and
1

(c), fol tq(t)dt < oo. Regarding [, ¢(t)dt, note that for any s in ]0,1] we
have (using (a))

0 < [log(s)|([0. 5]) = /

o log(s™ ") v(du) < / log(u™") v(du)

10,s]
- / | og(u)] v(du),
10,s]

and hence it follows from (b) that |log(s)|v([0,s]) — 0 as s \, 0. By partial
integration we obtain thus that

oo>/
10

VeI v(ds) = [[1og(s) (0, D], + | wo.spas

)

= [ s as

1
Lo=sy s]) ds.
> / Le=*([0, 5]) d

By (3.32) and (b) it remains, thus, to show that [~ le=*v([0,s])ds < oo.
For that, it obviously suffices to prove that 1v([0,s]) — 0 as s — co. Note,

towards this end, that whenever s >t > 1, we have

1y 0,s =1y 0,t Ly(du) < Lv 0,t lIfdu,
Ly([0,5]) = 1uA] 1>+/ Ly(du) < L] D+/Mu< )

1¢,s]
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and hence, for any ¢ in [1, oo,

limsup L1/([0, s]) < / 1 y(du).
Jt,00]

Letting finally ¢ — oo, it follows from (c) that

limsup Lv([0, s]) = 0,

§— 00

as desired. O

Theorem 3.24. The mapping T maps the class L (x) onto the class T."(x),
i.e.

Y(LE(x) =T (+).

T

Proof. Assume that p € LI (x) with generating triplet (a,p,n). Then, by
Remark 2.13, a = 0, p is concentrated on [0, 0o, and [;~ min{1, ¢} p(dt) < co.
Furthermore, since p is selfdecomposable, p(dt) = r(t)dt for some density
function r: [0, 00[— [0, oo[, satisfying that the function ¢(t) = tr(t) (¢t > 0) is
decreasing (cf. the last paragraph in Section 2.5).

Now the measure 7°(p) has generating triplet (0, p, 77), where p has density
7 given by

7(t) = /OOO q(sil)e*ts ds, (t>0),

(cf. Corollary 3.4). We already know from Corollary 3.21 that Y(u) € ZD; (%),
so it remains to show that the function ¢ — ¢7(¢) is completely monotone, i.e.
that

t7(t) = /[0 [e*ts v(ds), (t>0),

for some (Radon) measure v on [0, 00[. Note for this, that the function s —
q(s71) is increasing on ]0,00[. This implies, in particular, that s — ¢(s=!)
has only countably many points of discontinuity, and hence, by changing r on
a Lebesgue null-set, we may assume that s — ¢(s~!) is increasing and right
continuous. Note finally that ¢(s™) — 0 as s \, 0. Indeed, since s — ¢(s7 1) is
increasing, the limit 8 = limgs o ¢(s™!) exists and equals infs~o¢g(s™'). Since
sr(s) = q(s) — B as s — oo and [~ r(s)ds < oo, we must have 8 = 0.
We may now let v be the Stieltjes measure corresponding to the function
s q(s71), ie.

q(s7h), ifs>0,

v(] = oo, s]) = {0, if s <0.

Then, whenever ¢ € ]0,00[ and 0 < a < b < 0o, we have by partial integration

/a (s ytet ds = [- q(sfl)eﬂz + /] e, (3.33)
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Here g(a=1)e™* — 0 as a \, 0. Furthermore, since fooo q(s Hte P ds =
t7(t) < oo, it follows from (3.33) that v = limp_ o ¢(b™1)e ™" exists in [0, oc].
Now sr(s)e™t/* = q(s)e™"/* — v as s \, 0, and since fol sr(s)ds < oo, this
implies that v = 0. Letting, finally, a — 0 and b — oo in (3.33), we may now
conclude that

tr(t) = / q(s™Hte ™ ds = / e Su(ds), (t >0),
0 ]0,00]

as desired.

Assume conversely that ji € 7.7 (x) with generating triplet (a, p,7). Then
a =0, p is concentrated on [0, 00 and [;* min{1,t} 5(dt) < co. Furthermore,
p has a density 7 in the form

1
(t) = — e ¥ u(ds), t>0),
(1) /[Om[ (ds),  (t>0)

t

for some (Radon) measure v on [0, o[, satisfying conditions (a),(b) and (c) of
Lemma 3.23.
We define next a function r: ]0, co[— [0, co[ by

r(s) = Lu([0,1]), (s >0). (3.34)

Furthermore, we put
q(s) = sr(s) =v([0,]),  (5>0),

and we note that ¢ is decreasing on 0, oo and that ¢(s™1) = v/([0, s]). Note
also that, since v({0}) = 0 (cf. Lemma 3.23),

0 < v([0,s])e™ " < v([0,s]) — 0, as s\, 0,

L1(ds) < oo (cf. Lemma 3.23), it

for any ¢ > 0. Furthermore, since f[l ool 5

follows as in the last part of the proof of Lemma 3.23 that 1v([0,s]) — 0
as s — oo. This implies, in particular, that q(s~1)e ™ = v([0,s])e? =
1u([0, s])se™ — 0 as s — oo for any positive ¢. By partial integration, we
now conclude that

oo oo
/ q(s Hte ¥ ds = {— q(s_l)e_ts] + / e " u(ds) = t7(t),
0 0 10,00
for any positive t. Hence,
7(t) = / q(s7He " ds = / s7ir(sThe t ds, (t >0),
0 0

and by Corollary 3.4, this means that
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o= [
0

where p(dt) = r(t)dt. Note that since v is a Radon measure, r is bounded
on compact subsets of ]0,00[, and hence p is o-finite. We may thus apply
Proposition 3.11 to conclude that [;° min{1,¢} p(dt) < oo, so in particular p
is a Lévy measure. Now, let 1 be the measure in ZD(x) with generating triplet
(0,p,m), where

n=1n-— /OOO </Rt(1[71’1] (t) — 1[,%30] (t)) Dxp(dt))eiz dx.

Then Y(11) = ji and p € IDS (%) (cf. Corollary 3.21). Moreover, since tr(t) =
q(t) is a decreasing function of ¢, it follows that pu is selfdecomposable (cf. the
last paragraph of Section 2.5). This concludes the proof. O

The General Thorin Class

We start again with some technical results on complete monotonicity.

Lemma 3.25. Let v be a Borel measure on [0, 00[ satisfying that
Vit >0: / e " y(ds) < oo,
[0,00]

and note that v is a Radon measure on [0,00[. Let further q: ]0,00] — [0, 00|
be the function given by

at) =1 /[O7oo[e_tsu(ds), (t>0). (3.35)

Then q is a Lévy density (i.e. f(;)o min{1,t?}q(t)dt < oo) if and only if v
satisfies the following three conditions:

(a) v({0}) = 0.
(b) f]o,1[ |log(t)| v(dt) < co.
(c) f[lm[ L v(dt) < occ.

Proof. We note first that

/Olﬁq(t) dt:/olt(/[o,oo[ets z/(ds)) dt = /[O)oo[ (/oltets dt) v(ds)

1 1
—on+ [ 5

10,00[ 57

(1 —e7% —se %) v(ds).
(3.36)

Exactly as in the proof of Lemma 3.23 we have also that
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/100 q(t)dt = /Ooo %e_tu([o,t]) dt. (3.37)

Assume now that ¢ is a Lévy density. Exactly as in the proof of Lemma 3.23,
formula (3.37) then implies that v satisfies conditions (a) and (b). Regarding
(c), note that by (3.36),

1
00 > / t2q(t) dt > / %(1—6_5—86_8) v(ds) > (1—26_1)/ % v(ds),
0 [1,00[ & [1

o0 §

where we used that s — 1 — e~ — se™® is an increasing function on [0, oo[. It
follows thus that (c) is satisfied too.
Assume conversely that v satisfies (a),(b) and (c¢). Then by (3.36) we have

1
1 1
/ t2q(t)dt = / —(l—e*—se ")v(ds) < / 1 V(ds)+/ — v(ds),
0 10,00[ 8 10,1] [1,00[ §

where we used that s 2(1 —e™* — se™%) = fol te~t*dt < 1 for all positive s.
Hence, using (c¢) (and the fact that v is a Radon measure on [0, 0c[), we see
that [ t2q(t) dt < oco.

Regarding floo q(t) dt, we find by application of (a) and (b), exactly as in
the proof of Lemma 3.23, that

1y
oo>/]o’1]|log(s)1/(ds)2/0 —e °v([0, s]) ds.

S

By (3.37), it remains thus to show that [~ Le™*1([0,s])ds < oo, and this

clearly follows, if we prove that s~2v([0, s]) — 0 as s — oo (since v is a Radon
measure). The latter assertion is established similarly to the last part of the
proof of Lemma 3.23: Whenever s > ¢ > 1, we have

(08D < S0+ [ vaw),

Jt,s] U

and hence for any ¢ in [1, 0o,

1 1
lim sup S—QV([O, s]) < /]t [ —v(du). (3.38)

$§—00 (7
Letting finally t — oo in (3.38), it follows from (c) that

limsup s~ 2(]0, s]) = 0.

§— 00

This completes the proof. 0O
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Corollary 3.26. Let v be a Borel measure on R satisfying that

vt e R\ {0}: / e Il y(ds) < oo,
R

and note that v is necessarily a Radon measure on R. Let ¢: R\ {0} — [0, o0]
be the function defined by:

q(t) = % f[opo[eits v(ds), if t >0,
ﬁ ji—oo,O] e ®u(ds), ift<0.

Then q is a Lévy density (i.e. fR min{1,t?}q(t)dt < oo), if and only if v
satisfies the following three conditions:

(d) v({0}) = 0.
(e) f[—Ll]\{O} | log [t]| v(dt) < oo.
L v(dt) < oo.

—~
Lz}
~—

fR\]71,1[

Proof. Let vy and v_ be the restrictions of v to [0, c0[ and | — oo, 0], respec-
tively. Let, further, 7_ be the transformation of v_ by the mapping s — —s,
and put ¢(t) = ¢(—t). Note then that

1

q(t) = t/[om[ets v_(ds),  (t>0).

By application of Lemma 3.25, we now have

q is a Lévy density on R <= ¢ and ¢ are Lévy densities on [0, 0]
<= vy and v_ satisfy (a),(b) and (c) of Lemma 3.25
<= v satisfies (d),(e) and (f).

This proves the corollary. O

Theorem 3.27. The mapping T maps the class of selfdecomposable distribu-
tions on R onto the generalized Thorin class, i.e.

Proof. We prove first that T(L(x)) € 7 (). So let ;1 be a measure in £() and
consider its generating triplet (a, p,n). Then a > 0, n € R and p(dt) = r(¢) dt
for some density function, r(t), satisfying that the function

qt) = [t[r(t),  (teR),
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is increasing on | — oo, 0] and decreasing on ]0, co[. Next, let (2a, 5,7) be the
generating triplet for 7(u). From Lemma 3.4 we know that p has the following
density w.r.t. Lebesgue measure:

A (i fo q(y 1)e ty dy, ift>0,
1) =
f_ooo CI(Z/ 1)6 ty dy, ift <0.

Note that the function y +— ¢(y~!) is increasing on ]0, cc[. Thus, as in the
proof of Theorem 3.24, we may, by changing r(¢) on a null-set, assume that

y +— q(y~!) is increasing and right-continuous on ]0, co[. Furthermore, since
(oo}

T lq(s)ds = [T r(s)ds < oo, it follows as in the proof of Theorem 3.24
that ¢(y~!) — 0 as y \, 0. Thus, we may let v, be the Stieltjes measure
corresponding to the function y — ¢(y~!) on ]0, 0o], i.e.

0, if y <0,
qy™h), ify>0.

wﬂ—wwDZ{

Now, whenever ¢ > 0 and 0 < b < ¢ < oo, we have by partial Stieltjes
integration that

t/bc q(s e " ds = [— e_tsq(s_l)]

C

, + /bc e vy (ds). (3.39)

Here, e "q(b=') < q(b™') — 0 as b\, 0. Since [;° q(s™!)e " ds = 7(t) < o0,
(3.39) shows, furthermore, that the limit

— i —te =1y _ li —t/s
7= lim e q(c ) lim e sr(s)

exists in [0, 00]. Since [;~ s%r(s)ds < oo, it follows that we must have v = 0.
From (3.39), it follows thus that

tr(t) = t/ooo q(s e " ds = /000 e vy (ds). (3.40)

Replacing now r(s) by r(—s) for s in ]0, oo[, the argument just given yields the
existence of a measure v_ on [0, co[, such that (after changing r on a null-set)

0, if y <0,

U_(] —o00,y]) = {q(—y_l), if y > 0.

Furthermore, the measure 7_ satisfies the identity

t/ooo qg(—s e ¥ ds = /OOO e " u_(ds), (t>0).

Next, let v_ be the transformation of _ by the mapping s — —s. For ¢ in
] — 00, 0] we then have
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7 (1) —|t\/ s 1) _tsds—|t|/ o~ ltls g
:A eIt (m)tﬁw Sv_(ds).

Putting finally v = vy + v_, it follows from (3.40) and (3.41) that

17(t) fo v(ds), ift>0,
f_oo (ds) if t <0,

(3.41)

and this shows that (1) € 7 (), as desired (cf. the last paragraph in Sec-
tion 2.5).

Consider, conversely, a measure fi in 7 (x) with generating triplet (a, p, 7).
Then a > 0, 7 € R and p has a density, 7, w.r.t. Lebesgue measure such that

17 0) {k ds), ift >0,

ffoo e’ts V(ds), ift <0,

for some (Radon) measure v on R satisfying conditions (d),(e) and (f) of
Corollary 3.26. Define then the function r: R\ {0} — [0, oo[ by

r(s) = g(m]y if s >0,
N q 0]), ifs<0,

and put furthermore

v([0,1]), ifs>0,

1
GiBD if s <0 (3.42)

dﬂZﬂNQZ{

Note that since v({0}) = 0 (cf. Corollary 3.26), we have

vt > 0: v([0,s])e™ ™ <v([0,s]) — 0, ass\,0,
and

vt < 0:v([s,0))e " < v([s,0]) -0, ass /0.

Furthermore, since fR\ % v(ds) < oo, it follows as in the last part of the

1,1]
proof of Lemma 3.25 that

lim s~ 2([0,s]) =0 = lim s 2v([s,0]).

§—00 5— — 00

In particular it follows that

Vt>0: lim v([0,s])e”** =0, and that Vt<O0: lim v([s,0])e " =0.

§— 00

By partial Stieltjes integration, we find now for ¢ > 0 that
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t/ooo q(s7He " ds = [ — q(s_l)e_ts}zo + /000 e " u(ds) -

_ /0 " et u(ds) = (1),

Denoting by © the transformation of v by the mapping s — —s, we find
similarly for ¢ < 0 that

|t|f(t)/0 etSy(ds)/OooetlSu(ds)

— 00

h (3.44)

Combining now (3.43) and (3.44) it follows that

. fooo q(s7e t*ds, ift >0,
) =1, o .
Joa(she ®vds, ift <0.

By Corollary 3.4 we may thus conclude that p(dt) = fOOO(D$p)e_C” dx, where
p(dt) = r(t) dt. Since v is a Radon measure, 7 is bounded on compact subsets
of R\ {0}, so that p is, in particular, o-finite. By Proposition 3.9, it follows
then that [, min{1,¢*} p(dt) < oo, so that p is actually a Lévy measure and
To(p) = p-

Let, finally, 11 be the measure in ZD(x) with generating triplet (%a,p, n),
where

n=1- /OOO (/Rt(l[—m] (t) = Lj_pu) (1)) sz(dt)>efz da.

Then 7' (1) = f1, and since q is increasing on | — oo, 0] and decreasing on ]0, co|
(cf. (3.42)), we have that 4 € L£(x). This concludes the proof. ]

3.4 The Mappings T§* and T, o € [0,1]

As announced in Section 1, we now introduce two families of mappings
{5 to<a<1 and {7*}o<a<1 that, respectively, generalize 1p and 77, with
7Y = Y, T° = 7 and with 73 and Y the identity mappings on 9, and
ID(x), respectively. The Mittag-Leffler function takes a natural role in this.

A review of relevant properties of the Mittag-Leffler function is given. The
transformation 77" is defined in terms of the associated stable law and is shown
to be injective, with absolutely continuous images. Then 7§ is extended to a
mapping 7% : ZD(x) — ZD(x), in analogy with the extension of 7 to 7", and
properties of 7% are discussed. Finally, stochastic representations of 7" and
T are given.
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The Mittag-Leffler Function

The Mittag-Leffler function of negative real argument and index a > 0 is
given by

o (=t)*
Eq(—t) = ;F(am Ty (t>0). (3.45)
In particular we have F1(—t) = e, and if we define Ey by setting o = 0 on
the right hand side of (3.45) then Eo(—t) = (1 +¢)~! (whenever |t| < 1).
The Mittag-Leffler function is infinitely differentiable and completely
monotone if and only if 0 < a < 1. Hence for 0 < e < 1 it is representable as
a Laplace transform and, in fact, for « in ]0, 1[ we have (see [Fe71, p. 453])

Fo(—t) = /O 1o (2) da, (3.46)

where
Colz) = a a1V, (a7 1), (x> 0), (3.47)

and o, denotes the density function of the positive stable law with index «
and Laplace transform exp(—60%). Note that, for 0 < a < 1, the function (, ()
is simply the probability density obtained from o, (y) by the transformation
x =y~ “. In other words, if we denote the distribution functions determined
by (, and o, by Z, and S, respectively, then

Zo(x) =1 = So(z™). (3.48)

As kindly pointed out to us by Marc Yor, (, has a direct interpretation as the
probability density of lga) where lﬁa) denotes the local time of a Bessel process
with dimension 2(1 — «). The law of lﬁ“) is called the Mittag-Leffler distrib-
ution. See [MoOs69] and [ChYo03, p. 114]; cf. also [GrRoVaYo99]. Defining
Ca(x) as e ® for @« = 0 and as the Dirac density at 1 when o = 1, formula
(3.46) remains valid for all v in [0, 1].

For later use, we note that the probability measure ¢, (z) dz has moments
of all orders. Indeed, for « in ]0,1[ and any p in N we have

= b — >~ —pa
/0 2P (x) da /0 x P (z) de,

where clearly floo x P, (x) dz < oo. Furthermore, by partial integration,

1 1
/ TP, (x) de = [m‘p"Sa(x)]é —i—pa/ rP7lS, () da
0 0

1
= S4(1) +pa/ P18, () do < oo,
0
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where we make use (twice) of the relation

—a

e’ Sy(x) — 0, asz\,0,

(cf. [Fe7l, Theorem 1, p.448]). Combining the observation just made with
(3.45) and (3.46), we obtain the formula

o R
/0 xc“(x)dx_nakﬂ)’

which holds for all « in [0, 1].

(k € No), (3.49)

The Mapping Y§*

As before, we denote by 91 the class of all Borel measures on R, and 9y, is
the subclass of all Lévy measures on R.

Definition 3.28. For any « in ]0,1[, we define the mapping 1§ : My — M

by the expression:

TS(p) = / T (Dup)Cala)dz,  (pemy). (3.50)

We shall see, shortly, that 7" actually maps 21y, into itself. In the sequel,
we shall often use p, as shorthand notation for Y§*(p). Note that with the
interpretation of (,(z)dz for @« = 0 and 1, given above, the formula (3.50)
specializes to 7 (p) = p and 79 (p) = Yo(p).

Using (3.47), the formula (3.50) may be reexpressed as

paldt) = /0 (@ dt)on(x) da. (3.51)

Note also that p,(dt) can be written as

o0
oldt) = [ pli) an.

where R, denotes the inverse function of the distribution function Z, of

Colz)dz.
Theorem 3.29. The mapping 1§ sends Lévy measures to Lévy measures.
For the proof of this theorem we use the following technical result:

Lemma 3.30. For any Lévy measure p on R and any positive x, we have
/ 1D, p(dt) < max{l,x2}/ min{1, %} p(dt), (3.52)
R\[—1,1] R

and also

t* Dyp(dt) < max{1,2?} / min{1,#*} p(dt). (3.53)
[—1,1] R
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Proof. Note first that
[ 1Dupldt) = Dop®\ [-1.1) = p(R\ [z a7,
R\[—1,1]
If 0 <z <1, then
PR\ [~2~1,271)) < p(R\ [-1,1]) < / min{1, 2} p(de),

and if x > 1,

PR\ [~z 1)) < / 228 p(dt) + / 1 p(df)
[—1L1\[-2z~tz—1] R\[-1,1]

< mQ/min{l,tQ}p(dt).
R
This verifies (3.52). Note next that

/ t2 Dyp(dt) = / 11 - (8)p(dt).
[7171]

R
If z > 1, we find that
/ PP () pldt) < 22 / 2111 1(8) pldt) < 22 / min{1, 2} p(dt),
R R R

and, if 0 <z < 1,

/]R $2t21[,x—1,x—1] (t) p(dt)

1
332/ t? p(dt)—|—$2/thl[,m—lvz—l]\[,l’l](t) p(dt)

-1

IA

1
$2/ t2 p(dt) + l‘z/Rx_2].[_I—1,$—1]\[_171] (t) p(dt)

-1

< [ 1t2p(dt)+ /R Lry(—1,11(f) p(dt)

:/min{l,tg}p(dt).
R

This verifies (3.53). O

Proof of Theorem 3.29. Let p be a Lévy measure on R and consider the
measure p, = 1'*(p). Using Lemma 3.30 and (3.49) we then have
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jgnﬂn{LtQ}ﬁaﬁh)::Aag(j@nﬁn{Ltz}[hpﬁh))QAx)dx
—/Ooo2max{1,x2}</Rmin{l,tQ}p(dtD(a(x)dx

= Q/Rmin{l,t2}p(dt) /000 2max{1,2?}(o(r) dz < oo,

as desired. 0

Absolute Continuity

As in Section 3.1, we let w denote the transformation of the Lévy measure p

by the mapping = — .

Theorem 3.31. For any Lévy measure p the Lévy measure po given by (3.50)
15 absolutely continuous with respect to Lebesgue measure. The density 7o s
the function on R\{0} given by

Folt) = 157 sCa(st) w(ds), ift >0,
’ fi)oo [s|Ca(st) w(ds), ift <O0.

Proof. It suffices to prove that the restrictions of p, to ] — 0o, 0[ and ]0, o0]
equal those of 7, (t) dt. For a Borel subset B of |0, 0o, we find that

/B Folt)dt = /B ( / " sGa(st)w(ds)) i = / N / " S15(0Ga(st) dt) w(ds)
= [ (] 1ot ot du) wias)

where we have used the change of variable u = st. Changing again the order
of integration, we have

IRCEE /OOO ([ 1a6 wwlas) )t au

0
— /OOo (/()OC 15(su) p(ds))Ca(u) du

:/'mﬂm@wwzmw)

0

One proves similarly that the restriction to | — 00, 0[ of p, equals that of
To(t) dt. O
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Corollary 3.32. Letting, as above, Z, denote the distribution function for
the probability measure (,(t) dt, we have

ﬁJ%wD_Awﬂ%QMwM@_AW&MB)”%M®) (3.54)

fort in]0,00[, and

@M—wm=/ (1- Za(st)w(ds) = [ Sal(ts) /") w(ds) (3.55)

fort in] —o00,0[.

Proof. For ¢ in [0, co[ we find that

alitol = [ ([ salswtds)) du

— [ (] st e) du)
— [ (] Gl (s ) dw) (i)

~ [ (] colwnmw)du) wias)

:/ (1= Za(st)) w(ds)

0
N /OO Sal(st) "/ ") w(ds),
0

where the last equality follows from (3.48). Formula (3.55) is proved similarly.
O

Injectivity of I§*

In order to show that the mappings 1., : ZD(x) — ZD(x) are injective, we first
introduce a Laplace like transform: Let p be a Lévy measure on R, and as above
let w be the transformation of p by the mapping ¢ — ¢=1: R\ {0} — R\ {0}.
Then w satisfies

W({0}) =0 and / min{1,~2} w(dt) < oo, (3.56)
R
For any 60,5 > 0 we then define

Ls(0 % w) = / o017 (dt).

R
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It follows immediately from (3.56) that £5(6 I w) is a finite, positive number
for all 8,3 > 0. For 8 = 1, we recover the usual Laplace transform.

Proposition 3.33. Let « be a fized number in |0, 1], let p be a Lévy measure
on R, and put po, = T§(p). Let further w and &, denote, respectively, the
transformations of p and ps by the mapping t — t=1: R\ {0} — R\ {0}. We
then have

Li/a(0V* §Ga)=L1(0Fw), (6 €]0,00).

Proof. Recall first from Theorem 3.31 that p,(dt) = 7o/(t) dt, where

Folt) = fooo sCa(st)w(ds), ift >0,
° I IslCalst) w(ds), if ¢ < 0.
Consequently, w,, has the following density w.r.t. Lebesgue measure:
Fo(t- 1)t = I st a(st™ ) w(ds), if t >0,
“ IO Islt2Ca (st w(ds), if ¢ <O0.

For any positive 8, we then find

/ Te 0 oy (dt)
0
= /OO em0t" (/00 stfzga(stfl)w(ds)) dt
0 0
= /OOO (/OOO e*(’tl/at’%a(st*l) dt) sw(ds)

= [ e e sy (st ) )

1 [ > o
_ 7/ (/ o0t/ t—1+1/ao_a(s—1/atl/a)dt) S—l/aw(d8)7
0

« 0

where we have used (3.47). Applying now the change of variable: u =
s~ Vegl/a we find that

oo

/000 o0t Do (dt) :/o (/0 e,gsl/waa(u) du) w(ds)
g

oo

e (0s1/%)" w(ds) (3.57)
0
e—9°‘s

/)
/ w(ds),
0
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where we used that the Laplace transform of o, (t) dt is given by
> @
/ e Mo (t)dt =e",  (n>0),
0

(cf. [Fe7l, Theorem 1, p. 448]). Applying next the above calculation to the
measure w := D_jw, we find for any positive # that

/0 oIt &;a(dt)/o eelt””(/o sl 2Ca (st w(ds) ) dt

_ /O o ( /O - st™2Ca(st™h) @(ds)) dt
:/oo e "% 5(ds)
0

O @
:/ e 075l y(ds).

Combining formulae (3.57) and (3.58), it follows immediately that L/,
@t ©a) = L1(0% T w), for any positive 6. O

(3.58)

Corollary 3.34. For each « in ]0,1[, the mapping T§: My — My, is injec-
tive.

Proof. With notation as in Proposition 3.33, it follows immediately from that
same proposition that the (usual) Laplace transform of w is uniquely deter-
mined by po = 1§(p). As in the proof of Corollary 3.7, this implies that w,
and hence p, is uniquely determined by 7§ (p). O

The Mapping Y
Our next objective is to “extend” 7§ to a mapping V*: ID(x) — ID(x).

Definition 3.35. For a probability measure (i in TD(x) with generating triplet
(a,p,m), we let Y*(u) denote the measure in ITD(x) with generating triplet
(Cal, PoyNa), where po =T (p) is defined by (3.50) while

2

_— <a<l
a1 1) for 0<a<

Co —

and

U = -1
Na = m +/0 <~/]Rt(1[_1’1] (t) - 1[—w—1,m—1](t))p(f dt))ca(x)(;izg)
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To see that the integral in (3.59) is well-defined, we note that it was shown,
although not explicitly stated, in the proof of Lemma 3.13 that

/ luz|[1—1,1)(uz) — 1—y 4 (uz)| p(dz) < max{l,xQ}/ min{1,u?} p(du).
R 0

Together with (3.49), this verifies that 7, is well-defined. Note also that since
Y is injective (cf. Corollary 3.34), it follows immediately from the definition
above that so is 7. The choice of the constants ¢, and 7, is motivated by
the following two results, which should be seen as analogues of Theorems 3.16
and 3.17. In addition, the choice of ¢, and 7, is essential to the stochastic
interpretation of 7 given in Theorem 3.44 below. Note that for o = 0, we
recover the mapping 7", whereas putting o = 1 produces the identity mapping
on ID(x).

Theorem 3.36. Let p be a measure in ID(x) with characteristic triplet
(a,p,m). Then the cumulant function of T*(u) is representable as

Cro(€) = oty — benaC+ [ (Bali€t) =1~ Crrteptionn(®) pla)
(3.60)
for any ¢ in R, and where E, is the Mittag-Leffler function.
Proof. For every 0 < a < 1 we note first that for any ¢ in R,
t .
Eo(i¢t) =1 — icml[—l,l] (t) = /0 (elcm — 1 —iCtal_q (t))(a(x) dz,
(3.61)

which follows immediately from the above-mentioned properties of E, and
the probability density (, (including the interpretation of {,(x)dx for « = 0
or 1). Note in particular that [ 2¢a(2)de = 7y (cf (3.49)).

We note next that it was established in the proof of Lemma 3.15 that

Rt 1
/ ‘e’ctr — 1 —iCtal_q q(t)| p(dt) < (2 + f(Cx)2) / min{1, %} p(dt).
0 V2 R
Together with Tonelli’s theorem, (3.61) and (3.49), this verifies that the inte-
gral in (3.60) is well-defined, and that it is permissible to change the order of
integration in the following calculation:
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[ (Batict) =1 =i 1o @) pla
= /R (/0 (it —1— iCtzli_q 1) (t))Ca() dx)p(dt)
= /Ooo (/]R (el —1— iCul_y1 41y (u)) P(fv_ldu))ca(a:) du

— /OOO (/}R (€ — 1 —iCuli_y y(u)) P(x_ldu))ca(x)dx
e /O‘X’ (/Ru(l[’“] () = a1y (W) p(e™ du) ) o (2) da

= /R (eigu —-1- iCul[_lyl] (U)) po(du)

[ (f 000 = sy ) pla™ ) ) o 0)

Comparing the above calculation with Definition 3.35, the theorem follows
readily. a

Proposition 3.37. For any « in |0,1[ and any measure p in ZD(*) we have

Cra)(z) = /000 Cu(zx)(a(z)de, (z €R).

Proof. Let (a, p,n) be the characteristic triplet for u. For arbitrary z in R, we
then have

| cuteaitato) da
= /Oo (inzx - 1azQx2 +/ (e —1— itzzli_q q)(t)) p(dt))(a(x) dx
0 2 R ’

=inz /OOO 2o (z) da — %aZQ /OO 22 (z) da

0
n /]R ( /O h (e — 1 —itzal_y (1)) Ca(2) dx) p(dt)

inz az? ) o,
(3.62)

where the last equality uses (3.49) as well as (3.61). According to Theo-
rem 3.36, the resulting expression in (3.62) equals Cya(,)(2), and the propo-
sition follows. 0O
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Properties of T«

We prove next that the mappings 7% posses properties similar to those of 1"
established in Proposition 3.18.

Proposition 3.38. For each « in ]0,1], the mapping T: ID(x) — ID(x)
has the following algebraic properties:

(1) For any pa, pa in ID(x), T(pu1 * p2) = T (1) * T(p2).
(ii) For any p in ID(x) and any ¢ in R, T*(D.u) = DT ().
(iii) For any ¢ in R, T*(4.) = 0.

Proof. Suppose p1, s € ID(x). Then for any z in R we have by Proposi-
tion 3.37

CT“(Nl*Mz)(z) = A Om*uz (Zm)ca(m) dx

_ /0 (G (22) + Coy (22)) Ca () dr

= Cra(uy) (2) + Crauy)(2) = Cra(u)sra(us)(2),

which verifies statement (i). Statements (i) and (iii) follow similarly by ap-
plications of Proposition 3.37. 0O

Corollary 3.39. For each « in [0,1], the mapping T*: ID(x) — ID(x) pre-
serves the notions of stability and selfdecomposability, i.e.

TS(x)) CS(x) and T*(L(x)) C L(x).
Proof. This follows as in the proof of Corollary 3.19. O

Theorem 3.40. For each « in ]0,1[, the mapping T*: ID(x) — ID(x) is
continuous with respect to weak convergence®.

For the proof of this theorem we use the following
Lemma 3.41. For any real numbers ¢ and t we have

. ict |14 t2
et — 1 ic +

2

Proof. For t = 0 the left hand side of (3.63) is interpreted as 3(?, and the
inequality holds trivially. Thus, we assume that ¢t # 0, and clearly we may
assume that ¢ # 0 too.

For t in R\ [—1, 1], note that lﬁz < 2, and hence

®In fact, it can be proved that 7 is a homeomorphism onto its range with
respect to weak convergence; see [BaTh04c].
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it g ict ’1+t2 1+ ¢

ic ,
- | S D | < 416 < smax{1 (o).

For ¢ in [—1,1] \ {0}, note first that

. i 1+ ¢2 ) N
ict _q_ ICt) :(1@_1—'15 't—)
(e 1+2) 2 ¢ G +iCt 5 ) 4

1+t
t2

- ((cos((t) — 1) +i(sin(Ct) - Ct)) Fict.

(3.64)

Using the mean value theorem, there is a real number &; strictly between 0
and ¢, such that

cos(Ct) =1 1 rcos(Ct) —1
t2 B E( t

) =~ sin(céa)c

and hence

)cos(ct) - 1‘ _ ‘<2 &1 sin(¢r)

t2 t ¢&
Appealing once more to the mean value theorem, there are, for any non-zero
real number z, real numbers &; between 0 and x and &3 between 0 and &o,
such that

R (3.65)

sin(z) _ 1 =cos(§2) — 1 = =& sin(&3), and hence # - 1‘ < |zl

T

As a consequence

sin(Ct)
@

Combining (3.64)-(3.66), it follows for ¢ in [—1,1] \ {0} that

1 1 1
= [sin(¢t) = ¢t = 5 - [¢t] | <5l =1C2 (3.60)

. iCt |1+1¢?
et —1— m!? < (I¢]* +1¢?) - 2+ I¢] < 5max{1, |¢[*}.
This completes the proof. 0

Corollary 3.42. Let p be an infinitely divisible probability measure on R with
generating pair (y,0) (see Section 2.1). Then for any real number ¢ we have

Cu(O)] < (Il + 5o (R)) max{1, |¢[*}.

Proof. This follows immediately from Lemma 3.41 and the representation:

ict )1+t2

i e) e o(dt). ]

Cu(C) =WC+/R (eict —1
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Proof of Theorem 3.40. Let (u,) be a sequence of measures from ZD(x),
and suppose that p, — p for some measure p in ZD(x). We need to show
that 7 (p,) — Yo (). For this, it suffices to show that

Cya(un)(z) — Cya(u) (Z), (Z S R). (3.67)

By Proposition 3.37,

Crouy(2) = /OOOC' L (27)Ca(r)dz and  Cya(,(z) = /000 C(zx)Ca(x) dz,

for all n in N and z in R. According to [Sa99, Lemma 7.7],
Cy,(y) — Cyu(y), forallyinR,
so by the dominated convergence theorem, (3.67) follows, if, for each z in R,
we find a Borel function h,: [0, 00[ — [0, oo, such that
(o)
Vn € Nz € [0,00(: |Cp, (22)¢a(2)| < h.(z) and / hy(x)de < oco.
0

(3.68)
Towards that end, let, for each n in N, (y,,0,) denote the generating pair
for pu,,. Since j1,, — p, Gnedenko’s theorem (cf. [GnK068, Theorem 1, p.87])
asserts that

S:=supo,(R) <oco and G :=suply,| < .
neN neN

Now, by Corollary 3.42, for any n in N, z in R and « in [0, co[ we have
|Cpi, (22)Ca(2)] < (G + 58) max{1, 2%2°}(a (),

and here, by formula (3.49),

/OO(G +58) max{1, 222?*}(, (z) dz < (G + 55) / (1 + 2%2%) () dz
0 R

=(G+59)+ (G + 55)22% < o0.
Thus, for any z in R, the Borel function
h.(z) = (G +58) max{1, 2%2*}(, (), (z €0, 00]),
satisfies (3.68). This concludes the proof. O

We close this section by mentioning that a replacement of e=¥ by (,(y) in
the proof of Proposition 3.22 produces a proof of the following assertion:

Vu € ID(x) Vo € [0,1]: g has p’th moment <= 7"“(u) has p’th moment.
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3.5 Stochastic Interpretation of T and

The purpose of this section is to show that for any measure p in ZD(x), the
measure 1°(u) can be realized as the distribution of a stochastic integral w.r.t.
to the (classical) Lévy process corresponding to p. We establish also a similar
stochastic interpretation of 7*(u) for any « in ]0,1[. The main tool in this is
Proposition 2.6.

Theorem 3.43. Let p be an arbitrary measure in ID(x), and let (X;) be a
(classical) Lévy process (in law), such that L{X1} = u. Then the stochastic
integral

1
Z :/ —log(1 —t)dX;
0

exists, as the limit in probability, of the stochastic integrals folfl/n —log(1 —
t)dX;, as n — oco. Furthermore, the distribution of Z is exactly T ().

Proof. The existence of the stochastic integral fol —log(1—1t)dX, follows from

Proposition 2.6, once we have verified that fol |C,,(—ulog(l —t))|dt < oo, for
any v in R. Using the change of variable: t =1 —e™*, z € R, we find that

1 oo
-/(J‘Cﬂ(—ulog(l—t)ﬂdt:/O |Cu(ux)|e dez,

and here the right hand side is finite, according to Lemma 3.15.
Combining next Proposition 2.6 and Theorem 3.17 we find for any » in R
that

Crizy(u) = /O Chu(—ulog(1 — ) dt = /0 " Cp(uw)e " da = o (),

which implies that L{Z} = 1'(u), as desired. O

Before proving the analog of Theorem 3.43 for 7%, recall that R, denotes
the inverse of the distribution function Z,, of the probability measure ¢, (x) dz.

Theorem 3.44. Let p be an arbitrary measure in ID(x), and let (X;) be a
(classical) Lévy process (in law), such that L{X1} = p. For each o € ]0,1],
the stochastic integral

1
Y = / R, (s) dX; (3.69)
0
exists, as a limit in probability, and the law of Y is T (u).

Proof. Tt suffices to consider « in 0, 1[. In order to ensure the existence of
the stochastic integral in (3.69) , it suffices, by Proposition 2.6, to verify that

fol |C.(2R4(t))| dt < oo for all z in R. Denoting by A the Lebesgue measure
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on [0, 1], note that Z,((n(z)dx) = A, so that R, (\) = (o () dz. Hence, we
find that

/|c (zRa(t))] dt = /OO|CH(zu)|Ra()\)(du)
= [ 1eue0] - Gl du
0

< /00 (|7] + 5v(R)) max{1, 2°u}(a (u) du < oo,
0

where (7, v) is the generating pair for i (cf Corollary 3.42). Thus, by Propo-

sition 2.6, the stochastic integral ¥ = fo t) dX; makes sense, and the
cumulant function of Y is given by

1 1
C{zi1Y} = /0 Cu(zRy(t)) dt = /0 Cp(zu)Ca(u) du = Cray(2),

where we have used Theorem 3.37. This completes the proof. 0O

3.6 Mappings of Upsilon-Type: Further Results

We now summarize several pieces of recent work that extend some of the
results presented in the previous part of the present section.

We start by considering a general concept of Upsilon transformations, that
has the transformations 7y and 7§* as special cases. Another special case, de-
noted Téq) (¢ > —2) is briefly discussed; this is related to the tempered stable
distributions. Further, extensions of the mappings 7y and 7§ to multivari-
ate infinitely divisible distributions are discussed, and applications of these
to the construction of Lévy copulas with desirable properties is indicated.
Finally, a generalization of Téq) to transformations of the class My (M) of
Lévy measures on the cone of positive definite m x m matrices is mentioned.

General Upsilon Transformations

The collaborative work discussed in the subsequent parts of the present Sec-
tion have led to taking up a systematic study of gemeralized Upsilon trans-
formations. Here we mention some first results of this, based on unpublished
notes by V. Pérez-Abreu, J. Rosinski, K. Sato and the authors. Detailed ex-
positions will appear elsewhere.

Let p be a Lévy measure on R, let 7 be a measure on R+ ( and introduce
the measure p, on R by

prtin) = [ " oy ) (dy). (3.70)

Note here that if X is an infinitely divisible random variable with Lévy
measure p(dz) then yX has Lévy measure p(y~'dr).
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Definition 3.45. Given a measure 7 on Rsg we define T as the mapping
Y7 : p— pr where pr is given by (3.70) and the domain of 1 is

dom Yy = {p e My, (R) ( pr €My, (R)} .

We have dom?] = My, (R) if and only if

/Ooo(1+y2)7'(dy)<oo.

Furthermore, letting

o @)= {p e m@® | [ @1 ptan) < oo}

(finite variation case) we have 1 : My (R) — M (R) if and only if

/Ow<1+|y>7<dy><oo.

Mappings of type 7] have the important property of being commutative under
composition. Under rather weak conditions the mappings are one-to-one, and
the image Lévy measures possess densities with respect to Lebesgue measure.
This is true, in particular, of the examples considered below.

Now, suppose that 7 has a density h that is a continuous function on R+ .
Then writing py, for p, we have

pr(dz) = /OOO ply~'dz)h(y)dy. (3.71)

Clearly, the mappings 15 and 1§ are special instances of (3.71).

Ezample 3.46. & transformation. The 7} transformation obtained by letting

h(y) = 11,1 (y)y™"

is denoted by @q. Its domain is

dom &y = {p € My, (R) ‘ /R\[ }10g|y|p(dy) < OO} :
11

As is well known, this transformation maps dom®y onto the class of selfde-
composable Lévy measures.
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Ezxample 3.47. Téq) transformations. The special version of 7" obtained by
taking

h(y) =yte™
is denoted To(q). For each ¢ > —1, domLTSQ) =My, (R), for ¢ = —1 the domain
equals domy @y, while, for q € (-2, —1), T(EQ) has domain

dom 73" = {p € M (R) ‘ /R\[ " ly| =7 p(dy) < OO} :

These transformations are closely related to the tempered stable laws. In fact,
let o(dz) = cxazr™'~*k(z)dr with

h(z) = /O ety (de)

be the Lévy measure of an element in R(x). Then o is the image under Téfl*a)

of the Lévy measure
p(dz) =z~ v (dz), (3.72)

where v is the image of the measure v under the mapping z — x~ L

Interestingly, V0@ = @91 = Té_l). The transformations 7} may in wide
generality be characterized in terms of stochastic integrals, as follows. Let

H(E) = /}5 " hy) dy,

set s = H(&) and let K, with derivative k, be the inverse function of H, so
that K(H(§)) = £ and hence, by differentiation, k(s)h(§) = 1. Let p be an
arbitrary element of My (R) and let L be a Lévy process such that L; has
Lévy measure p. Then, under mild regularity conditions, the integral

H(0)
y = /0 K(s)dL, (3.73)

exists and the random variable Y is infinitely divisible with Lévy measure
pr =13 (p)-

Upsilon Transformations of ZD%(x)

The present subsection is based on the paper [BaMaSa04] to which we refer
for proofs, additional results, details and references.

We denote the class of infinitely divisible probability laws on R? by ZD%(x).
Let h be a function as in the previous subsection and let L be a d-dimensional
Lévy process. Then, under a mild regularity condition on h, a d-dimensional
random vector Y is determined by
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H(0)
Y = / K (s) dLg
0

cf. the previous subsection.

If h is the density determining 7 then each of the components of Y belongs
to class B(x) and Y is said to be of class B%(x), the d-dimensional Goldie-
Steutel-Bondesson class. Similarly, the d-dimensional Thorin class 7%(*) is
defined by taking the components of Ly to be in L(x). In [BalMaSa04], prob-
abilistic characterizations of B%(x) and 79 (x) are given, and relations to self-
decomposability and to iterations of 1y and &y are studied in considerable
detail.

Application to Lévy Copulas

We proceed to indicate some applications of 7 and @y and of the above-
mentioned results to the construction of Lévy copulas for which the associ-
ated probability measures have prescribed marginals in the Goldie-Steutel-
Bondesson or Thorin class or Lévy class (the class of selfdecomposable laws).
For proofs and details, see [BaLi04].

The concept of copulas for multivariate probability distributions has an
analogue for multivariate Lévy measures, termed Lévy copulas. Similar to
probabilistic copulas, a Lévy copula describes the dependence structure of a
multivariate Lévy measure. The Lévy measure, p say, is then completely char-
acterized by knowledge of the Lévy copula and the m one-dimensional margins
which are obtained as projections of p onto the coordinate axes. An advantage
of modeling dependence via Lévy copulas rather that distributional copulas
is that the resulting probability laws are automatically infinitely divisible.

For simplicity, we consider only Lévy measures and Lévy copulas living on

2. Suppose that pq,..., t,, are one-dimensional infinitely divisible distri-
butions, all of which are in the Goldie-Steutel-Bondesson class or the Thorin
class or the Lévy class. Using any Lévy copula gives an infinitely divisible dis-
tribution g with margins pq, ..., t,,. But p itself does not necessarily belong
to the Bondesson class or the Thorin class or the Lévy class, i.e. not every Lévy
copula gives rise to such distributions. However, that can be achieved by the
use of Upsilon transformations. For the Goldie-Steutel-Bondesson class and
the Lévy class this is done with the help of the mappings 7y and @y, respec-
tively, and combining the mappings @ and 1, one can construct multivariate
distributions in the Thorin class with prescribed margins in the Thorin class.

Upsilon Transformations for Matrix Subordinators

The present subsection is based on the paper [BaPA05] to which we refer for
proofs, additional results, details and references.

An extension of Ty to a one-to-one mapping of the class of d-dimensional
Lévy measures into itself was considered in the previous subsection. Here we
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shall briefly discuss another type of generalization, to one-to-one mappings of
ID7 ™ (%), the set of infinitely divisible positive semidefinite m x m matrices,
into itself. This class of mappings constitutes an extension to the positive
definite matrix setting of the class {Téq)},1<q<oo considered above, and we

shall use the same notation Téq) in the general matrix case.
We begin by reviewing several facts about infinitely divisible matrices with
. —+ . . . .
values in the cone M, of symmetric nonnegative definite m x m matrices.
Let M, x,m denote the linear space of m x m real matrices, M, the linear

subspace of symmetric matrices, M; the closed cone of non-negative definite
matrices in M,,,, M, and {X > 0} the open cone of positive definite matrices
in M,,.

For X € M,,,xm, X | is the transpose of X and tr(X) the trace of X. For X
in M; , X1/2 is the unique symmetric matrix in M; such that X = X1/2X1/2,
Given a nonsingular matrix X in M,,x.,, X! denotes its inverse, |X| its
determinant and X~ the inverse of its transpose. When X is in M} we
simply write X > 0.

The cone M; is not a linear subspace of the linear space M, x., of m x m
matrices and the theory of infinite divisibility on Euclidean spaces does not
apply immediately to M; In general, the study of infinitely divisible random

elements in closed cones requires separate work.

A random matrix M is infinitely divisible in MIL if and only if for each in-

teger p > 1 there exist p independent identically distributed random matrices
M, ..., M, in M; such that M < My + --- 4+ M,. In this case, the Lévy-
Khintchine representation has the following special form, which is obtained
from [Sk91] p.156-157.

Proposition 3.48. An infinitely divisible random matriz M is infinitely di-
visible in M; if and only if its cumulant transform is of the form

C(6: M) = itr(V00) + / (XO) _)pdX), ©@cME,  (3.74)

M+

m

where WO € M; and the Lévy measure p satisfies p(I\\/JIm\Mjn) = 0 and has
order of singularity

/7+ min(1, | X|)p(dX) < oco. (3.75)
MT”
Moreover, the Laplace transform of M is given by

Ly(0) =exp{-K(O; M)}, O €M, (3.76)

where IC is the Laplace exponent

M+

m

K(6: M) = tr(#°0) + / (1 — o=t (X0)) (X)), (3.77)
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For p in 9 (M) and ¢ > —1 consider the mapping To(q) 1 p — pg given
by

1

pe(d2) = / p(XTdzX Y X |7 e (XX, (3.78)
X>0

. , —+
The measure p, is a Lévy measure on M, .

To establish that for each ¢ > —1 the mapping TO(Q) is one-to-one the
following type of Laplace transform of elements p € My, (M}) is introduced:

£7p(0) = / o~ t(XO) | X7 p(dX). (3.79)
X>0

For any p > 1 and p in M (M), the transform (3.79) is finite for any
© € M, and the following theorem implies the bijectivity.

Theorem 3.49. Letp > 1 and p+ q > 1. Then

LPp,(6) = |@‘—%(m+1)—(p+q) LPp(V) |V|p+q ot (@ V) 7 (3.80)
V>0

for © € M}

As in the one-dimensional case, the transformed Lévy measure determined
by the mapping To(q) is absolutely continuous (with respect to Lebesgue mea-
sure on M ') and the density possesses an integral representation, showing in
particular that the density is a completely monotone function on M .

Theorem 3.50. For each ¢ > —1 the Lévy measure p, is absolutely continu-
ous with Lévy density vy given by

—Llim _ —tr —1
R0 = X[ [ TR ) s
Y >0
=X [ RO ), (352)
Y >0 —

4 Free Infinite Divisibility and Lévy Processes

Free probability is a subject in the theory of non-commutative probability.
It was originated by Voiculescu in the Nineteen Eighties and has since been
extensively studied, see e.g. [VoDyNi92], [Vo98] and [Bi03]. The present section
provides an introduction to the area, somewhat in parallel to the exposition
of the classical case in Section 2.5. Analogues of some of the subclasses of
ID(x) discussed in that section are introduced. Finally, a discussion of free
Lévy processes is given.
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4.1 Non-Commutative Probability and Operator Theory

In classical probability, one might say that the basic objects of study are ran-
dom variables, represented as measurable functions from a probability space
(£2,F, P) into the real numbers R equipped with the Borel o-algebra B. To
any such random variable X : {2 — R the distribution px of X is determined
by the equation:

/R £(8) px (dt) = E(F(X)),

for any bounded Borel function f: R — R, and where E denotes expectation
(or integration) w.r.t. P. We shall also use the notation L{X} for px.

In non-commutative probability, one replaces the random variables by (self-
adjoint) operators on a Hilbert space H. These operators are then referred to
as ‘non—commutative random variables”. The term non-commutative refers
to the fact that, in this setting, the multiplication of “random variables” (i.e.
composition of operators) is no longer commutative, as opposed to the usual
multiplication of classical random variables. The non-commutative situation
is often remarkably different from the classical one, and most often more com-
plicated.

By B(H) we denote the vector space of all bounded operators on H, i.e.
linear mappings a: ‘H — H, which are continuous, or, equivalently, which
satisfy that

lall := sup{Jla€]| | € € M, [i¢]| < 1} < oo,

The mapping a — |la|| is a norm on B(H), called the operator norm, and
B(H) is complete in the operator norm. Composition of operators form a
(non-commutative) multiplication on B(H), which, together with the linear
operations, turns B(H) into an algebra.

Recall next that B(H) is equipped with an involution (the adjoint opera-
tion) a — a*: B(H) — B(H), which is given by:

<a£’77> = <§va*77>’ (a € B(H)’ §&mne H)

Instead of working with the whole algebra B(H) as the set of “random vari-
ables” under consideration, it is, for most purposes, natural to restrict atten-
tion to certain subalgebras of B(H).

A (unital) C*-algebra acting on a Hilbert space H is a subalgebra of B(H),
which contains the multiplicative unit 1 of B(H) (i.e. 1 is the identity mapping
on H), and which is closed under the adjoint operation and topologically closed
w.r.t. the operator norm.

A wvon Neumann algebra, acting on H, is a unital C*-algebra acting on H,
which is even closed in the weak operator topology on B(H) (i.e. the weak
topology on B(H) induced by the linear functionals: a — (a&,n), &,n € H).

A state on the (unital) C*-algebra A is a positive linear functional 7: A —
C, taking the value 1 at the identity operator 1 on H. If 7 satisfies, in addition,
the trace property:
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7(ab) = 7(ba), (a,be A),

then 7 is called a tracial state®. A tracial state 7 on a von Neumann algebra
A is called normal, if its restriction to the unit ball of A (w.r.t. the operator
norm) is continuous in the weak operator topology.

Definition 4.1. (i) A C*-probability space is a pair (A, T), where A is a unital
C*-algebra and 7 is a faithful state on A.

(il) A W*-probability space is a pair (A, T), where A is a von Neumann algebra
and T 1s a faithful, normal tracial state on A.

The assumed faithfulness of 7 in Definition 4.1 means that 7 does not
annihilate any non-zero positive operator. It implies that A is finite in the
sense of F. Murray and J. von Neumann.

In the following, we shall mostly be dealing with W *-probability spaces.
So suppose that (A, 7) is a W*-probability space and that a is a selfadjoint
operator (i.e. a* = a) in A. Then, as in the classical case, we can associate
a (spectral) distribution to @ in a natural way: Indeed, by the Riesz repre-
sentation theorem, there exists a unique probability measure p, on (R, B),
satisfying that

/R £(8) paldt) = 7(f(a)), (4.1)

for any bounded Borel function f: R — R. In formula (4.1), f(a) has the
obvious meaning if f is a polynomial. For general Borel functions f, f(a) is
defined in terms of spectral theory (see e.g. [Ru91]).

The (spectral) distribution p, of a selfadjoint operator a in A is automati-
cally concentrated on the spectrum sp(a), and is thus, in particular, compactly
supported. If one wants to be able to consider any probability measure p on
R as the spectral distribution of some selfadjoint operator, then it is neces-
sary to take unbounded (i.e. non-continuous) operators into account. Such an
operator a is, generally, not defined on all of H, but only on a subspace D(a)
of H, called the domain of a. We say then that a is an operator in H rather
than on H. For most of the interesting examples, D(a) is a dense subspace of
‘H, in which case a is said to be densely defined. We have included a detailed
discussion on unbounded operators in the Appendix (Section A), from which
we extract the following brief discussion.

If (A, 7) is a W*-probability space acting on H and a is an unbounded
operator in H, a cannot be an element of A. The closest a can get to A is to be
affiliated with A, which means that ¢ commutes with any unitary operator u,
that commutes with all elements of A. If a is selfadjoint, a is affiliated with A
if and only if f(a) € A for any bounded Borel function f: R — R. In this case,

5In quantum physics, 7 is of the form 7(a) = tr(pa), where p is a trace class
selfadjoint operator on H with trace 1, that expresses the state of a quantum system,
and a would be an observable, i.e. a selfadjoint operator on H, the mean value of
the outcome of observing a being tr(pa).
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(4.1) determines, again, a unique probability measure p, on R, which we also
refer to as the (spectral) distribution of a, and which generally has unbounded
support. Furthermore, any probability measure on R can be realized as the
(spectral) distribution of some selfadjoint operator affiliated with some W*-
probability space. In the following we shall also use the notation L{a} for the
distribution of a (possibly unbounded) operator a affiliated with (A, 7). By A
we denote the set of operators in H which are affiliated with A.

4.2 Free Independence

The key concept on relations between classical random variables X and Y
is independence. One way of defining that X and Y (defined on the same
probability space ({2, F, P)) are independent is to ask that all compositions
of X and Y with bounded Borel functions be uncorrelated:

E{[f(X) —E{f(X)}] - [g(Y) = E{g(Y)}]} =0,

for any bounded Borel functions f,¢g: R — R.
In the early 1980’s, D.V. Voiculescu introduced the notion of free indepen-
dence among non-commutative random variables:

Definition 4.2. Let ay,as,...,a, be selfadjoint operators affiliated with a
W -probability space (A, 7). We say then that ay,as,...,a, are freely inde-
pendent w.r.t. T, if

m{[f1(ai,) = 7(fi(ai)f2(ai) — 7(f2(ai)] - [fp(ai,) = 7(fp(as,)]} =0,

for any p in N, any bounded Borel functions fi, fa,..., fp: R = R and any
indices i1,12,...,4, m {1,2,...,7} satisfying that i1 # Q2,12 # i3,...,0p—1 #
ip.

At a first glance, the definition of free independence looks, perhaps, quite
similar to the definition of classical independence given above, and indeed, in
many respects free independence is conceptually similar to classical indepen-
dence. For example, if ay,as, ..., a, are freely independent selfadjoint opera-
tors affiliated with (A, 7), then all numbers of the form 7{ f1(a;, ) fa(as,) - - - fp(ai,)}
(where i1,42,...,1, € {1,2,...,r} and fi, fo,..., fp: R — R are bounded
Borel functions), are uniquely determined by the distributions L{a;}, i =
1,2,...,r. On the other hand, free independence is a truly non-commutative
notion, which can be seen, for instance, from the easily checked fact that two
classical random variables are never freely independent, unless one of them is
trivial, i.e. constant with probability one (see e.g. [V098]).

Voiculescu originally introduced free independence in connection with his
deep studies of the von Neumann algebras associated to the free group factors
(see [Vo85], [Vo9l], [Vo90]). We prefer in these notes, however, to indicate the
significance of free independence by explaining its connection with random



96 Ole E. Barndorff-Nielsen and Steen Thorbjgrnsen

matrices. In the 1950’s, the phycicist E.P. Wigner showed that the spectral
distribution of large selfadjoint random matrices with independent complex
Gaussian entries is, approximately, the semi-circle distribution, i.e. the distri-
bution on R with density s — 4 — 52 - 1[_39)(s) w.r.t. Lebesgue measure.
More precisely, for each n in N, let X(™ be a selfadjoint complex Gaussian
random matrix of the kind considered by Wigner (and suitably normalized),
and let tr,, denote the (usual) tracial state on the n x n matrices M, (C). Then
for any positive integer p, Wigner showed that

E{tr, [(X(”))p]} — _22 sP/4 — s? ds.

n—oo

In the late 1980’s, Voiculescu generalized Wigner’s result to families of inde-
pendent selfadjoint Gaussian random matrices (cf. [Vo91]): For each n in N, let
X 1(”), XQ(n), ..., X\ be independent” random matrices of the kind considered
by Wigner. Then for any indices i1,142,...,4, in {1,2,...,7r},

B{ir XX X)) o rlar, o),

where z1,%9,...,2, are freely independent selfadjoint operators in a W*-
probability space (A, 7), and such that L{z;} is the semi-circle distribution
for each .

By Voiculescu’s result, free independence describes what the assumed clas-
sical independence between the random matrices is turned into, as n — oc.
Also, from a classical probabilistic point of view, free probability theory may
be considered as (an aspect of) the probability theory of large random matri-
ces.

Voiculescu’s result reveals another general fact in free probability, namely
that the role of the Gaussian distribution in classical probability is taken
over by the semi-circle distribution in free probability. In particular, as also
proved by Voiculescu, the limit distribution appearing in the free version of
the central limit theorem is the semi-circle distribution (see e.g. [VoDyNi92]).

4.3 Free Independence and Convergence in Probability

In this section, we study the relationship between convergence in probability
and free independence. The results will be used in the proof of the free Lévy-
1t6 decomposition in Section 6.5 below. We start by defining the notion of
convergence in probability in the non-commutative setting:

Definition 4.3. Let (A, 1) be a W*-probability space and let a and a,, n € N,
be operators in A. We say then that a, — a in probability, as n — oo, if
|an, — a| — 0 in distribution, i.e. if L{|a, — a|} — 69 weakly.

7in the classical sense; at the level of the entries.
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Convergence in probability, as defined above, corresponds to the so-called
measure topology, which is discussed in detail in the Appendix (Section A). As
mentioned there, if we assume that the operators a,, and a are all selfadjoint,
then convergence in probability is equivalent to the condition:

L{a, —a} - &.

Lemma 4.4. Let (b,,) be a sequence of (not necessarily selfadjoint) operators
in a W*-probability space (A, T), and assume that ||b,|| < 1 for all n. Assume,
further, that b, — b in probability as n — oo for some operator b in A. Then
also ||b]] <1 and 7(b,) — 7(b), as n — oo.

Proof. To see that ||b|| < 1, note first that b:b, — b*b in probability as
n — o0, since operator multiplication and the adjoint operation are both
continuous operations in the measure topology. This implies that b)b,, — 0*b
in distribution, i.e. that L{b’b,} = L{b*b} as n — oo (cf. Proposition A.9).
Since supp(L{b}:b,}) = sp(blb,) C [0, 1] for all n (recall that 7 is faithful), a
standard argument shows that also [0,1] D supp(L{b*b}) = sp(b*b), whence
ol <1.

To prove the second statement, consider, for each n in N, b, = 3 (b,, + b};)
and b!! = 2 (b, — b%), and define b',b” similarly from b. Then b/, b}, b, b" are
all selfadjoint operators in A4 of norm less than or equal to 1. Since addition,
scalar-multiplication and the adjoint operation are all continuous operations
in the measure topology, it follows, furthermore, that b/, — o' and b/ — v
in probability as n — oco. As above, this implies that L{0,} > L{V'} and
L{v'Y 5 L{V'} as n — oo.

Now, choose a continuous bounded function f: R — R, such that f(z) =«
for all 2 in [—1,1]. Then, since sp(b},),sp(b’) are contained in [—1, 1], we find
that

) = r(70) = [ f@ LE ) — [ f@ 1))
= (F(1) = 7).

Similarly, 7(b2) — 7(b"”) as n — oo, and hence also 7(b,) = 7(b}, + b)) —
7(b' +1b") = 7(b), as n — oc. i

Lemma 4.5. Let r be a positive integer, and let (b1 n)nen, ..., (brn)nen
be sequences of bounded (not necessarily selfadjoint) operators in the W*-
probability space (A,T). Assume, for each j, that |[bj,|| < 1 for all n
and that b;, — b; in probability as n — oo, for some operator b; in A.

If bin,b2pn,...,brn are freely independent for each m, then the operators
b1,ba,...,b. are also freely independent.
Proof. Assume that by ,,b2,,...,b,, are freely independent for all n, and

let i1,42,...,4, in {1,2,...,7} be given. Then there is a universal polynomial
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P;, .., in 7p complex variables, depending only on iy,...,i,, such that for
all n in N|

Now, since operator multiplication is a continuous operation with respect
to the measure topology, b, nbiyn -+ bi, n — bi by, -+ b;, in probability as
n — oo. Furthermore, [[b;, 1bi, n -~ b, n| < 1 for all n, so by Lemma 4.4 we
have

7 (biynbign - biym) — T(biybiy -+ bg,).

n—00

Similarly,

T(b;yn) — T(bﬁ), for any j in {1,2,...,r} and £ in N.

n—oo

Combining these observations with (4.2), we conclude that also

T(bilbiz e bip) = Pi1,<-.7ip [{T(bg)}lgégp’ ey {T(bﬁ)}lglgp}’

and since this holds for arbitrary i1,...,4, in {1,2,...,r}, it follows that
bi,...,b. are freely independent, as desired. 0O

For a selfadjoint operator a affiliated with a W*-probability space (A, ),
we denote by k(a) the Cayley transform of a, i.e.

k(a) = (a —ilg)(a+ily) "t

Recall that even though a may be an unbounded operator, k(a) is a unitary
operator in A.

Lemma 4.6. Let ay,as, ..., a, be selfadjoint operators affiliated with the W*-
probability space (A, 7). Then ay,as,...,a, are freely independent if and only
if k(a1),k(az2),...,k(a,) are freely independent.

Proof. This is an immediate consequence of the fact that a; and x(a;) generate
the same von Neumann subalgebra of A for each j (cf. [Pe89, Lemma 5.2.8]).
O

Proposition 4.7. Suppose r € N and that (a1n)nen, - -, (@rn)nen are se-
quences of selfadjoint operators affiliated with the W*-probability space (A, T).
Assume, further, that for each j in {1,2,...,r}, a;n — a; in probability as
n — oo, for some selfadjoint operator a; affiliated with (A, 7). If the opera-
tors aim, Qo p, ..., 0r, are freely independent for each n, then the operators
ai,as,...,a. are also freely independent.
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Proof. Assume that a1 ,a2y,...,a,, are freely independent for all n. Then,
by Lemma 4.6, the unitaries k(a1 ), ..., k(ary,) are freely independent for
each n in N. Moreover, since the Cayley transform is continuous in the measure
topology (cf. [St59, Lemma 5.3]), we have

k(ajn) — k(aj), in probability,
n—oo
for each j. Hence, by Lemma 4.5, the unitaries x(a1), .. ., k(a,) are freely inde-
pendent, and, appealing once more to Lemma 4.6, this means that a4, ..., a,
themselves are freely independent. 0O

Remark 4.8. Let B and C be two freely independent von Neumann subalgebras
of a W*-probability space (A, 7). Let, further, (b,) and (¢,,) be two sequences
of selfadjoint operators, which are affiliated with B and C, respectively, in the
sense that f(b,) € B and g(c,) € C for any n in N and any bounded Borel
functions f,¢g: R — R. Assume that b, — b and ¢, — c in probability as
n — o00. Then b and c¢ are also freely independent. This follows, of course,
from Proposition 4.7, but it is also an immediate consequence of the fact that
the set B of closed, densely defined operators, affiliated with B, is complete
(and hence closed) in the measure topology. Indeed, the restriction to B of the
measure topology on A is the measure topology on B (induced by 75). Thus,
b is affiliated with B and similarly c is affiliated with C, so that, in particular,
b and c are freely independent.

4.4 Free Additive Convolution

From a probabilistic point of view, free additive convolution may be considered
merely as a new type of convolution on the set of probability measures on R.
Let a and b be selfadjoint operators in a W*-probability space (A, 1), and
note that a + b is selfadjoint too. Denote then the (spectral) distributions of
a, b and a + b by g, pp and parp. If a and b are freely independent, it is
not hard to see that the moments of 1,45 (and hence piq4p itself) is uniquely
determined by p, and pp. Hence we may write p, B pp instead of g4, and
we say that p, B ju, is the free additive® convolution of ji, and py.

Since the distribution pu, of a selfadjoint operator a in A is a compactly
supported probability measure on R, the definition of free additive convo-
lution, stated above, works at most for all compactly supported probability
measures on R. On the other hand, given any two compactly supported prob-
ability measures pq and po on R, it follows from a free product construction
(see [VoDyNi92]), that it is always possible to find a W*-probability space

8The reason for the term additive is that there exists another convolution op-
eration called free multiplicative convolution, which arises naturally out of the non-
commutative setting (i.e. the non-commutative multiplication of operators). In the
present notes we do not consider free multiplicative convolution.
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(A, 7) and free selfadjoint operators a,b in A, such that a and b have distrib-
utions pq and po respectively. Thus, the operation H introduced above is, in
fact, defined on all compactly supported probability measures on R. To extend
this operation to all probability measures on R, one needs, as indicated above,
to consider unbounded selfadjoint operators in a Hilbert space, and then to
proceed with a construction similar to that described above. We postpone a
detailed discussion of this matter to the Appendix (see Remark A.3), since,
for our present purposes, it is possible to study free additive convolution by
virtue of the Voiculescu transform, which we introduce next.

By CT (respectively C™) we denote the set of complex numbers with
strictly positive (respectively strictly negative) imaginary part.

Let 1 be a probability measure on R, and consider its Cauchy (or Stieltjes)
transform G,,: C* — C~ given by:

Gul) = [ = mtd, (=)

o
Then define the mapping F,: Ct — C* by:

1

FIL(Z) = ma

(= € CH),

and note that F), is analytic on C*. It was proved by Bercovici and Voiculescu
in [BeVo93, Proposition 5.4 and Corollary 5.5] that there exist positive num-
bers 1 and M, such that F), has an (analytic) right inverse F 1 defined on
the region

Iy = {2z € C||Re(2)| < nlm(z), Im(z) > M}.

In other words, there exists an open subset G, s of C* such that F), is
injective on G, ar and such that F,(Gyv) = Iy -
Now the Voiculescu transform ¢,, of i1 is defined by

Su(2) = F ' (2) - 7,

on any region of the form I’ ys, where F, ! is defined. It follows from [BeVo93,
Corollary 5.3] that Im(F,; " (z)) < Im(z) and hence Im(¢,(z)) < 0 for all z in
Iy v

The Voiculescu transform ¢, should be viewed as a modification of
Voiculescu’s R-transform (see e.g. [VoDyNi92]), since we have the correspon-
dence:

Gu(2) = Ru(2).
A third variant, which we shall also make use of is the free cumulant transform,
given by:
Cu(z) = 2Ru(2) = 20, (). (4.3)
The key property of the Voiculescu transform is the following important re-
sult, which shows that the Voiculescu transform (and its variants) can be
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viewed as the free analogue of the classical cumulant function (the logarithm
of the characteristic function). The result was first proved by Voiculescu for
probability measures p with compact support, and then by Maassen in the
case where p has variance. Finally Bercovici and Voiculescu proved the general
case.

Theorem 4.9 ([Vo86],[Ma92],[BeVo93]). Let u1 and ps be probability
measures on R, and consider their free additive convolution i B po. Then

¢H153M2 (Z) - ¢N1 (Z> + (bﬂz (Z)7
for all z in any region Iy, ar, where all three functions are defined.

Remark 4.10. We shall need the fact that a probability measure on R is
uniquely determined by its Voiculescu transform. To see this, suppose p and
(' are probability measures on R, such that ¢, = ¢,/, on a region I, ps. It
follows then that also F,, = F},, on some open subset of C*, and hence (by
analytic continuation), F,, = F,» on all of C*. Consequently ; and p/ have the
same Cauchy (or Stieltjes) transform, and by the Stieltjes Inversion Formula
(cf. e.g. [Ch78, page 90]), this means that u = p'.

In [BeVo93, Proposition 5.6], Bercovici and Voiculescu proved the following
characterization of Voiculescu transforms:

Theorem 4.11 ([BeVo93]). Let ¢ be an analytic function defined on a re-
gion Iy ar, for some positive numbers 1 and M. Then the following assertions
are equivalent:

(i) There exists a probability measure p on R, such that ¢(z) = ¢,(2) for all
z in a domain Iy ppe, where M' > M.
(ii) There exists a number M’ greater than or equal to M, such that
(a) Im(p(2)) <0 for all z in Iy pr.
(b) ¢(2)/z — 0, as |z| — o0, z € L) mv-
(c) For any positive integer n and any points z1, ..., z, i Iy v, thenxn
matriz
Zj — 2k

zj + ¢(25) — 2K — m 1<j,k<n

)

18 positive definite.

The relationship between weak convergence of probability measures and
the Voiculescu transform was settled in [BeVo93, Proposition 5.7] and [BePa90,
Proposition 1]:

Proposition 4.12 ([BeVo93],[BePa96]). Let (1) be a sequence of proba-
bility measures on R. Then the following assertions are equivalent:

(a) The sequence (u,) converges weakly to a probability measure p on R.
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(b) There exist positive numbers n and M, and a function ¢, such that all the
functions ¢, ¢, are defined on I3 ar, and such that

(bl) G, (2) — ¢(z), as n — oo, uniformly on compact subsets of I'y

sup‘(b“” )—>0 as |z| — 00, z € I .
neN
(¢c) There exist posztwe numbers 1 and M, such that all the functions ¢, are

defined on I, nr, and such that

(c1) hmnﬂOO qu,L (iy) exists for all y in [M, oo].
Ppn (i

(c2) sup y‘—>0 as y — oo.

neN

If the conditions (a),(b) and (c) are satisfied, then ¢ = ¢, on Iy p

Remark 4.13 (Cumulants I). Under the assumption of finite moments of all
orders, both classical and free convolution can be handled completely by a
combinatorial approach based on cumulants. Suppose, for simplicity, that
is a compactly supported probability measure on R. Then for n in N, the
classical cumulant ¢,, of p may be defined as the n’th derivative at 0 of the
cumulant transform log f,. In other words, we have the Taylor expansion:

—n'z”.

NE

log fu(z) =

n=1

Consider further the sequence (my,)nen, of moments of u. Then the sequence
(my,) is uniquely determined by the sequence (¢,) (and vice versa). The for-
mulas determining m,, from (¢,) are generally quite complicated. However,
by viewing the sequences (m,) and (c,) as multiplicative functions M and
C on the lattice of all partitions of {1,2,...,n}, n € N (cf. e.g. [Sp97]), the
relationship between (m,,) and (¢,,) can be elegantly expressed by the formula:

C = M x Moeb,

where Moeb denotes the Mobius transform and where x denotes combinatorial
convolution of multiplicative functions on the lattice of all partitions (see
[Sp97],[Ro64] or [BaCo89]).

The free cuamulants (ky,) of p were introduced by R. Speicher in [Sp94].
They may, similarly, be defined as the coefficients in the Taylor expansion of
the free cumulant transform C,,:

o0
= g knz"
n=1

(see (4.3)). Viewing then (k,) and (m,) as multiplicative functions k& and
m on the lattice of all non-crossing partitions of {1,2,...,n}, n € N, the
relationship between (k) and (m,,) is expressed by the exact same formula:
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k = m * Moeb, (4.4)

where now x denotes combinatorial convolution of multiplicative functions on
the lattice of all non-crossing partitions (see [Sp97]).

For a family aj,as,...,a, of selfadjoint operators in a W*-probability
space (A, T) it is also possible to define generalized cumulants, which are
related to the family of all mixed moments (w.r.t. 7) of ay,as,...,a, by a
formula similar to (4.4) (see e.g. [Sp97]). In terms of these multivariate cumu-
lants, free independence of aq,as, ..., a, has a rather simple formulation, and
using this formulation, R. Speicher gave a simple and completely combinato-
rial proof of the fact that the free cumulants (and hence the free cumulant
transform) linearize free convolution (see [Sp94]). A treatment of the theory
of classical multivariate cumulants can be found in [BaCo89)].

4.5 Basic Results in Free Infinite Divisibility

In this section we recall the definition and some basic facts about infinite
divisibility w.r.t. free additive convolution. In complete analogy with the clas-
sical case, a probability measure p on R is H-infinitely divisible, if for any n
in N there exists a probability measure p, on R, such that

po=pin B i B B g,

n terms

It was proved in [Pa906] that the class ZD(H) of H-infinitely divisible proba-
bility measures on R is closed w.r.t. weak convergence. For the corresponding
classical result, see [Gnl{o683, §17, Theorem 3]. As in classical probability, B-
infinitely divisible probability measures are characterized as those probability
measures that have a (free) Lévy-Khintchine representation:

Theorem 4.14 ([Vo86],[Ma92],[BeVo93]).
Let 1 be a probability measure on R. Then v is B-infinitely divisible, if and
only if there exist a finite measure o on R and a real constant vy, such that

1+tz

du(z) =7~ +/ o(dt), (z €C). (4.5)
R 2 — t

Moreover, for a H-infinitely divisible probability measure p on R, the real

constant v and the finite measure o, described above, are uniquely determined.

Proof. The equivalence between H-infinite divisibility and the existence of a
representation in the form (4.5) was proved (in the general case) by Voiculescu
and Bercovici in [BeVo93, Theorem 5.10]. They proved first that p is -
infinitely divisible, if and only if ¢,, has an extension to a function of the form:
¢: CT — CTUR, i.e. a Pick function multiplied by —1. Equation (4.5) (and its
uniqueness) then follows from the existence (and uniqueness) of the integral
representation of Pick functions (cf. [Do74, Chapter 2, Theorem I]). Compared
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to the general integral representation for Pick functions, just referred to, there
is a linear term missing on the right hand side of (4.5), but this corresponds
to the fact that @ — 0 as y — o0, if ¢ is a Voiculescu transform (cf.
Theorem 4.11 above). O

Definition 4.15. Let p be a H-infinitely divisible probability measure on R,
and let v and o be, respectively, the (uniquely determined) real constant and
finite measure on R appearing in (4.5). We say then that the pair (v,0) is the
free generating pair for p.

In terms of the free cumulant transform, the free Lévy-Khintchine repre-
sentation resembles more closely the classical Lévy-Khintchine representation,
as the following proposition shows.

Proposition 4.16. A probability measure v on R is B-infinitely divisible if
and only if there exist a non-negative number a, a real number n and a Lévy
measure p, such that the free cumulant transform C, has the representation:

C.(2) = nz + az? +/R(

— 1 —tzl[_m](t)) p(dt), (z€C7). (4.6)
In that case, the triplet (a,p,n) is uniquely determined and is called the free
characteristic triplet for v.

Proof. Let v be a measure in ZD(H) with free generating pair (v, o0), and
consider its free Lévy-Khintchine representation (in terms of the Voiculescu

transform):
14tz
b0 (2) = +/R oy, (zech). (A7)

Then define the triplet (a, p, ) by (2.3), and note that

2

t

1
=17 — t(l _ t) — 7) dt).
v=n /R F1(t) = ) p(dD)
Now, for z in C~, the corresponding free cumulant transform C, is given by
Cu(2)

=z2¢,(1/2) = z(v—&-/}RW U(dt)>

z+t 22 +tz
:’yz—'_z/letz U(dt):'yz—l—/R 11, o(dt)

1 5 22 +tz t2
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Note here that

1 1 t?

L—y1(t) — T2 1- T e Ipyj—1,(t) = T2 Ipyj—1,1(%),

so that

[0 - ) o) = [ (1 = 7 tma ) £ota)

Note also that
22 41z 22 tz

It +82) 1—iz 148

Therefore,
3 -
Co(z)=nz — [/R (1—|-7252 —t M gy o1 (t)) t2p(dt)}z + az?
22 tz 9
t“p(dt
Jr/R(l—ter 1+t2) p(dt)
2

z
= nz+ a2’ +/R (1 — +t7 2y (t>) t2p(dt)

(t2)?
=nz+ az? Jr/R (1 _ + tZlR\[_Ll] (t)) p(dt).

Further,
1(25_2); +telry-1(t) = (1(%); - tz) ~ (@)
=< iztz —tzl1 ()
=1 —ltz — 1 —tzl_y q(t).
We conclude that
Cu(z)=nz+ az? +/R (1 e 1-— tZl[le] (ﬂ) p(dt). (4.8)

Clearly the above calculations may be reversed, so that (4.7) and (4.8) are
equivalent. 0O

Apart from the striking similarity between (2.2) and (4.6), note that these
particular representations clearly exhibit how u (respectively v) is always the
convolution of a Gaussian distribution (respectively a semi-circle distribution)
and a distribution of generalized Poisson (respectively free Poisson) type (cf.
also the Lévy-Itd decomposition described in Section 6.5). In particular, the
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cumulant transform for the Gaussian distribution with mean 7 and variance
a is: u — inu — %auQ, and the free cumulant transform for the semi-circle
distribution with mean 7 and variance a is z — nz + az? (see [VoDyNi92]).

The next result, due to Bercovici and Pata, is the free analogue of Khint-
chine’s characterization of classically infinitely divisible probability measures.
It plays an important role in Section 4.6.

Definition 4.17. Let (ky,)nen be a sequence of positive integers, and let

be an array of probability measures on R. We say then that A is a null array,
if the following condition is fulfilled:

Ve > 0: nlin;o | Dax i (R\ [—€,€]) = 0.
Theorem 4.18 ([BePa00]). Let {pn; | n € N, j € {1,2,...,k,}} be a
null-array of probability measures on R, and let (¢,)nen be a sequence of
real numbers. If the probability measures ji, = 8¢, B pin1 B e B - B png,
converge weakly, as n — oo, to a probability measure p on R, then p has to
be H-infinitely divisible.

4.6 Classes of Freely Infinitely Divisible Probability Measures

In this section we study the free counterparts S(H) and L(H) to the classes
S(x) and L(x) of stable and selfdecomposable distributions. We show in par-
ticular that we have the following hierarchy

G(H) Cc S(B) C L(B) CcID(H), (4.9)

where G(H) denotes the class of semi-circle distributions. We start with the
formal definitions of and S(H) and L(8).

Definition 4.19. (i) A probability measure j1 on R is called stable w.r.t. free
convolution (or just B-stable), if the class

{(u) | ¥: R — R is an increasing affine transformation}

is closed under the operation H. By S(H) we denote the class of HB-stable
probability measures on R.

(ii) A probability measure u on R is selfdecomposable w.r.t. free additive con-
volution (or just B-selfdecomposable), if for any c in ]0,1[ there exists a
probability measure . on R, such that

By L(B) we denote the class of B-selfdecomposable probability measures
on R.
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Note that for a probability measure ;1 on R and a constant ¢ in |0, 1], there
can be only one probability measure p., such that p = D.u 8 p.. Indeed,
choose positive numbers 1 and M, such that all three Voiculescu transforms
u, ¢p.u and ¢, are defined on the region I, 5. Then by Theorem 4.9, ¢,
is uniquely determined on I s, and hence, by Remark 4.10, p. is uniquely
determined too.

In order to prove the inclusions in (4.9), we need the following technical
result.

Lemma 4.20. Let p be a probability measure on R, and let 7 and M be
positive numbers such that the Voiculescu transform ¢, is defined on I
(see Section j.J). Then for any constant ¢ in R\ {0}, ¢p,, is defined on
e[ Ty = Ty jejaa, and

(i) if ¢ > 0, then ¢p, . (2) = cou(c™12) for all z in [y,
(ii) if ¢ < 0, then ¢p, u(2) = cou(c™1Z) for all z in |c[Iy .

In particular, for a constant ¢ in [—1,1], the domain of ¢p,, contains the
domain of ¢,,.

Proof. (i) This is a special case of [BeVo93, Lemma 7.1].

(ii) Note first that by virtue of (i), it suffices to prove (ii) in the case
c=—1.

We start by noting that the Cauchy transform G, (see Section 4.4) is
actually well-defined for all z in C\ R (even for all z outside supp(u)), and
that G,,(Z) = G(2), for all such z. Similarly, F), is defined for all z in C\ R,
and F,(z) = F,(%), for such z.

Note next that for any z in C\R, Gp_,,(2) = —G,(—2), and consequently

Fp_u(2) = =Fu(=2) = =Fu(-2).

Now, since —1') pr = Iy, a1, it follows from the equation above, that Fp_,, has
a right inverse on I, 57, given by FBEw(Z) = —F;'(~%), for all z in I}, .
Consequently, for z in I5, 57, we have

¢p_1u(2) = Fp' (2)—2 = —F; ' (=2)—2 = =(F. ' (=2) = (=2)) = —9u(-2),
as desired. O

Remark 4.21. With respect to dilation the free cumulant transform behaves
exactly as the classical cumulant function, i.e.

Cp.u(z) = Culcz), (4.11)

for any probability measure p on R and any positive constant c¢. This follows
easily from Lemma 4.20. As a consequence, it follows as in the classical case
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that a probability measure p on R belongs to S(8), if and only if the following
condition is satisfied (for 2! in a region of the form I'(n, M))

Va,a'>0Vb,b' € R3a">03b" € R: Cy(az)+bz+C,(a'2)+b'z = C,(a"2)+b" 2.
It is easy to see that the above condition is equivalent to the following
Va >0 3a” >0 3" € R: Cu(2) + Cpulaz) =Cu(a"2) + V2. (4.12)

Similarly, a probability measure p on R is H-selfdecomposable, if and only if
there exists, for any ¢ in ]0, 1[, a probability measure u. on R, such that

Cu(z) =Culcz) +C, (2), (4.13)
for 271 in a region of the form I"(n, M). In terms of the Voiculescu transform
¢, formula (4.13) takes the equivalent form

6(2) = c0u(c7'2) + 04 (2).
for all z in a region I, ar

Proposition 4.22. (i) Any semi-circle law is B-stable.
(ii) Let p be a B-stable probability measure on R. Then p is necessarily B-
selfdecomposable.

Proof. (i) Let 5,2 denote the standard semi-circle distribution, i.e.

702((3113 _1[ 22] \/—71’2(21.%
Then, by definition,
G(B) = {Duv028d |a>0, bec R}

It is easy to see that S(H) is closed under the operations D, (a > 0), and
under (free) convolution with &, (b € R). Therefore, it suffices to show that
0,2 € S(H). By [VoDyNi92, Example 3.4.4], the free cumulant transform of
Y0,2 is given by
C’Yo,z (2) = Z2= (z € (C+)7

and clearly this function satisfies condition (4.12) above.

(ii) Let g be a measure in S(H). The relationship between the constants
a and a” in (4.12) is of the form o’ = f(a), where f:]0,00] — ]1,00[ is a
continuous, strictly increasing function, satisfying that f(¢) — 1 as ¢t — 0F

and f(t) — oo as t — oo (see the proof of [BeVo93, Lemma 7.4]). Now, given
cin]0,1[, put a = f~(1/c) € ]0, 0], so that

Cu(2) +Cpulaz) = Cpc™t2) + bz,

for suitable b in R. Putting z = cw, it follows that
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Cu(w) — Cy(cw) = Cplacw) — bew.

Based on Theorem 4.11 is is not hard to see that z — C,(acw) — bcw is the
free cumulant transform of some measure p. in P. With this p., condition
(4.13) is satisfied. o

We turn next to the last inclusion in (4.9).

Lemma 4.23. Let p be a B-selfdecomposable probability measure on R, let ¢
be a number in |0,1[, and let u. be the probability measure on R determined
by the equation:

p=DcpB pe.

Let n and M be positive numbers, such that ¢,, is defined on I’y ar. Then ¢,
is defined on I, as well.

Proof. Choose positive numbers 1’ and M’ such that Iy v € Iy and such
that ¢, and ¢,,, are both defined on I . For z in Iy s, we then have (cf.
Lemma 4.20):

¢u(z) = C¢u(c_lz) + ¢Mc(z)-

Recalling the definition of the Voiculescu transform, the above equation means
that

Fu_l(z) —z= cqbﬂ(c_lz) + Fu_cl(z) -z, (zelym),

so that

Fljcl(z) = F,;l(z) —cpu(c'2), (2 € Ly ).

Now put ¢(z) = F,; () — c¢,(c™'z) and note that 1 is defined and holomor-
phic on all of I}, s (cf. Lemma 4.20), and that

Fuc(d}(z)) =z, (Z € Fn’,M’)~ (414)
We note next that 1 takes values in C*. Indeed, since F), is defined on C*,
we have that Im(F, ' (z)) > 0, for any z in I}, ar and furthermore, for all such
z, Im(¢,(c712)) <0, as noted in Section 4.4.

Now, since F),. is defined and holomorphic on all of C*, both sides of
(4.14) are holomorphic on I3, . Since I/ v has an accumulation point in
I’ v, it follows, by uniqueness of analytic continuation, that the equality in
(4.14) actually holds for all z in Iy v Thus, F),, has a right inverse on I, a7,
which means that ¢, is defined on I, s, as desired. 0O

Lemma 4.24. Let p be a HB-selfdecomposable probability measure on R, and
let (¢y,) be a sequence of numbers in |0, 1[. For each n, let pi., be the probability
measure on R satisfying

p=De, pB pec, .

. w
Then, if ¢, — 1 as n — oo, we have ., — dg, as n — oo.



110 Ole E. Barndorff-Nielsen and Steen Thorbjgrnsen

Proof. Choose positive numbers n and M, such that ¢, is defined on I5, /.
Note then that, by Lemma 4.23, ¢,,, is also defined on I5, s for each n in N
and, moreover,

(bﬂcn (z) = ¢M(z> - Cn¢N<CT_le), (Z € anM’ n e N) (415)

Assume now that ¢, — 1 as n — oo. From (4.15) and continuity of ¢, it is
then straightforward that ¢, (z) — 0 = ¢s,(2), as n — oo, uniformly on
compact subsets of I5, ys. Note furthermore that

~1
z z e,z
Sup’QSMcn( )’ _ Sup’(;s“( ) _ ¢/J‘(7’I:’lb ) N 0, as ‘Z| — 00, % c Fn,Mv
neN z neN z Cn Z
since ¢“T(Z) — 0 as |z| = oo, 2z € ')\, and since ¢,; ' > 1 for all n. It follows
thus from Proposition 4.12 that p., ~ &g, for n — oo, as desired. O

Theorem 4.25. Letube a probability measure on R. Ifuis B-selfdecomposable,
then p is B-infinitely divisible.

Proof. Assume that p is H-selfdecomposable. Then by successive applications
of (4.10), we get for any ¢ in ]0,1[ and any n in N that

= Denp B Den—1pte BDgn—2p. B8 Depie B pre. (4.16)

The idea now is to show that for a suitable choice of ¢ = ¢,, the probability
measures:

DCZ’L’H’aDCﬁ*IMCn’DC::*ZIU/Cna"'7Dcn:u/cna,ucn7 (HEN), (417)

form a null-array (cf. Theorem 4.18). Note for this, that for any choice of ¢,
in 10, 1[, we have that

chl/icn (R\ [_Ea 6]) S He,, (R\ [_67 ED?

for any j in N and any € in ]0, oo[. Therefore, in order that the probability
measures in (4.17) form a null-array, it suffices to choose ¢, in such a way
that

Denp X6y and e, L 6, asn— oo.

We claim that this will be the case if we put (for example)

cn=e¢ vr, (neN). (4.18)
To see this, note that with the above choice of ¢,, we have:
cp, —1 and ¢ — 0, asn— oo.

Thus, it follows immediately from Lemma 4.24, that ., ~ &y, as n — oo.
Moreover, if we choose a (classical) real valued random variable X with dis-
tribution y, then, for each n, Denpu is the distribution of ¢; X. Now, cp X' — 0,

n
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almost surely, as n — oo, and this implies that ¢} X — 0, in distribution, as
n — oo.

We have verified, that if we choose ¢,, according to (4.18), then the proba-
bility measures in (4.17) form a null-array. Hence by (4.16) (with ¢ = ¢,,) and
Theorem 4.18, u is B-infinitely divisible. O

Proposition 4.26. Let p be a B-selfdecomposable probability measure on R,
let ¢ be a number in |0, 1] and let p. be the probability measure on R satisfying
the condition:

p = Dep B pe.

Then . is B-infinitely divisible.

Proof. As noted in the proof of Theorem 4.25, for any d in |0, 1[ and any n in
N we have

p=Dgnpp B Dgn-1p1g B Dgn—2pq B - B Dgpg B piq,

where pg is defined by the case n = 1. Using now the above equation with
d = c'/", we get for each n in N that

DCIU,BH/LC = u = DCMEDC(n—l)/nMCI/nEHDC(H72)/7L/4LCI/TLBﬂ' . -EDcl/nucl/nEEuc1/n.
(4.19)
From this it follows that

e = Dotn—vympborsn B D n—2)y/mppor/m B B Dampgm B pam, (n S N).
(4.20)
Indeed, by taking Voiculescu transforms in (4.19) and using Theorem 4.9, it
follows that the Voiculescu transforms of the right and left hand sides of (4.20)
coincide on some region I}, 3s. By Remark 4.10, this implies the validity of
(4.20).
By (4.20) and Theorem 4.18, it remains now to show that the probability
measures:

Dc(n—l)/nucl/n, Dc(n72)/n Het/ny e ,Dcl/n Met/n s ei/n,

form a null-array. Since ¢//™ € 0, 1[ for any j in {1,2,...,n — 1}, this is the
case if and only if p./n — &y, as n — oo. But since ¢!/" — 1, as n — oo,

Lemma 4.24 guarantees the validity of the latter assertion. O

4.7 Free Lévy Processes

Let (A, 7) be a W*-probability space acting on a Hilbert space H (see Sec-
tion 4.1 and the Appendix). By a (stochastic) process affiliated with A, we
shall simply mean a family (Z;)¢cjo,00[ Of selfadjoint operators in A, which
is indexed by the non-negative reals. For such a process (Z;), we let u; de-
note the (spectral) distribution of Z;, i.e. uy = L{Z;}. We refer to the family
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(11¢) of probability measures on R as the family of marginal distributions of
(Z:). Moreover, if s,t € [0,00[, such that s < t, then Z; — Z is again a
selfadjoint operator in A (see the Appendix), and we may consider its distri-
bution s = L{Z; — Zs}. We refer to the family (us¢)o<s<¢ as the family of
increment distributions of (Z;).

Definition 4.27. A free Lévy process (in law), affiliated with a W*-probability
space (A, T), is a process (Zy)i>o of selfadjoint operators in A, which satisfies
the following conditions:

(i) whenever n € N and 0 < tg < t; < --- < t,, the increments

Loy Lty — Lrgy Lty — Ly s ooy Ly, — Ly

n—17

are freely independent random variables.

(i) Zo = 0.

(iii) for any s,t in [0,00[, the (spectral) distribution of Zsy — Zs does not
depend on s.

(iv) for any s in [0,00[, Zsyt+ — Zs — 0 in distribution, as t — 0, i.e. the
spectral distributions L{Zs1+ — Zs} converge weakly to dg, ast — 0.

Note that under the assumption of (ii) and (iii) in the definition above,
condition (iv) is equivalent to saying that Z; — 0 in distribution, as ¢ \, 0.

Remark 4.28. (Free additive processes I) A process (Z;) of selfadjoint op-
erators in A, which satisfies conditions (i), (i) and (iv) of Definition 4.27, is
called a free additive process (in law). Given such a process (Z;), let, as above,
ws = L{Zs} and psy = L{Z; — Zs}, whenever 0 < s < t. It follows then that
whenever 0 < r < s < t, we have

Hs = Hp H Hor,s and Hrt = My s H Hs.ts (421)

and furthermore
fsits — 00, as t— 0, (4.22)

for any s in [0, col.

Conversely, given any family {u; |t > 0} U{ps | 0 < s < ¢} of probability
measures on R, such that (4.21) and (4.22) are satisfied, there exists a free
additive process (in law) (Z;) affiliated with a W*-probability space (A, T),
such that p, = L{Z,} and ps, = L{Z; — Z,}, whenever 0 < s < ¢. In fact, for
any families (p¢) and (us,¢) satisfying condition (4.21), there exists a process
(Z;) affiliated with some W*-probability space (A, 7), such that conditions
(i) and (ii) in Definition 4.27 are satisfied, and such that p, = L{Zs} and
ws.t = L{Z, — Z,}. This was noted in [Bi9g8] and [Vo98] (see also Remark 6.29
below). Note that with the notation introduced above, the free Lévy processes
(in law) are exactly those free additive processes (in law), for which s+ = pir—s
for all s,t such that 0 < s < t. In this case the condition (4.21) simplifies to
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e = ps B s, (0<s<t). (4.23)

In particular, for any family (u;) of probability measures on R, such that
(4.23) is satisfied, and such that pu; — o as ¢t \, 0, there exists a free Lévy
process (in law) (Z;), such that p, = L{Z;} for all t.

Consider now a free Lévy process (Z;):>0, with marginal distributions ().
As for (classical) Lévy processes, it follows then, that each p; is necessarily
H-infinitely divisible. Indeed, for any n in N we have:

n

Zp = Z(th/n —ZG-1)t/n);
=1

and thus, in view of conditions (i) and (iii) in Definition 4.27,

pt = feyn BBy, (n terms).

5 Connections between Free
and Classical Infinite Divisibility

An important connection between free and classical infinite divisibility was
established by Bercovici and Pata, in the form of a bijection A from the class
of classical infinitely divisible laws to the class of free infinitely divisible laws.
The mapping 7" of Section 3.2 embodies a direct version of the Bercovici-
Pata bijection and shows rather surprisingly that, in a sense, the class of
free infinitely divisible laws corresponds to a regular subset of the class of
all classical infinitely divisible laws. The mapping A also give rise to a direct
connection between the classical and the free Lévy processes, as discussed at
the end of the section.

5.1 The Bercovici-Pata Bijection A

The bijection to be defined next was introduced by Bercovici and Pata in
[BePa99].

Definition 5.1. By the Bercovici-Pata bijection A: ID(x) — ID(B) we de-
note the mapping defined as follows: Let p be a measure in ZD(x), and con-
sider its generating pair (v,0) (see formula (2.1)). Then A(u) is the measure
in ID(H) that has (y,0) as free generating pair (see Definition 4.15).

Since the #-infinitely divisible (respectively H-infinitely divisible) proba-
bility measures on R are exactly those measures that have a (unique) Lévy-
Khintchine representation (respectively free Lévy-Khintchine representation),
it follows immediately that A is a (well-defined) bijection between ZD(x) and
ID(H). In terms of characteristic triplets, the Bercovici-Pata bijection may
be characterized as follows.
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Proposition 5.2. If p is a measure in TD(x) with (classical) characteristic
triplet (a, p,n), then A(p) has free characteristic triplet (a, p,n) (cf. Proposi-
tion 4.16).

Proof. Suppose p € ID(x) with generating pair (7y,0) and characteristic
triplet (a, p,n), the relationship between which is given by (2.3). Then, by
definition of A, A(n) has free generating pair (v, o), and the calculations in
the proof of Proposition 4.16 (with v replaced by A(u)) show that A(u) has
free characteristic triplet (a, p,n). O

Ezample 5.3. (a) Let u be the standard Gaussian distribution, i.e.

p(dz) =

1 1,2
exp(—5x“)dx.
ous p(=27%)
Then A(p) is the semi-circle distribution, i.e.

A(p)(dx) = %\/4 — a2 1j_g9(x)dx.

(b) Let p be the classical Poisson distribution Poiss™(\) with mean A > 0, i.e.

p((nh) =0 ey,

Then A(p) is the free Poisson distribution Poiss™ (\) with mean ), i.e.

(1= N3+ 5=/ (@ —a)(b—2) - Ljgp(z)dz, fO<A<I,
2=/ (x —a)(b—x) - 1, () dx, it A > 1,

where a = (1 —v/A)? and b= (1 + V)2

Alp)(de) =

Remark 5.4 (Cumulants II). Let p be a compactly supported probability
measure in ZD(x), and consider its sequence (c,) of classical cumulants (cf.
Remark 4.13). Then the Bercovici-Pata bijection A may also be defined as the
mapping that sends p to the probability measure on R with free cumulants
(¢n). In other words, the free cumulants for A(u) are the classical cumulants
for p. This fact was noted by M. Anshelevich in [An01, Lemma 6.5]. In view
of the theory of free cumulants for several variables (cf. Remark 4.13), this
point of view might be used to generalize the Bercovici-Pata bijection to
multidimensional probability measures.

5.2 Connection between ¥ and A

The starting point of this section is the following observation that links the
Bercovici-Pata bijection A to the 7-transformation of Section 3.
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Theorem 5.5. For any u € ITD(x) we have

Crin(€) = Caun () = | T oo Tdr, (Ce]-o00).  (5.1)

Proof. These identities follow immediately by combining Proposition 5.2,
Proposition 4.16, Theorem 3.16 and Theorem 3.17. 0O

Remark 5.6. Theorem 5.5 shows, in particular, that any free cumulant func-
tion of an element in ZD(H) is, in fact, identical to a classical cumulant
function of an element of ZD(x). The second equality in (5.1) provides an
alternative, more direct, way of passing from the measure y to its free coun-
terpart, A(p), without passing through the Lévy-Khintchine representations.
This way is often quite effective, when it comes to calculating A(u) for specific
examples of p. Taking Theorem 3.43 into account, we note that for any mea-
sure p in ZD(x), the free cumulant transform of the measure A(p) is equal to
the classical cumulant transform of the stochastic integral fol —log(1—1t) dXy,
where (X;) is a classical Lévy process (in law), such that L{X1} = p.

In analogy with the proof of Proposition 3.38, The second equality in (5.1)
provides an easy proof of the following algebraic properties of A:

Theorem 5.7. The Bercovici-Pata bijection A: ID(x) — ID(H), has the fol-
lowing (algebraic) properties:

(i) If pi1, po € ID(x), then A(py * po) = A(pa) B Apz).

(i) If w € ID(%) and ¢ € R, then A(D.p) = D A(p).

(iil) For any constant ¢ in R, we have A(d.) = 0.

Proof. The proof is similar to that of Proposition 3.38. Indeed, property (ii),
say, may be proved as follows: For p in ZD(x) and ¢ in | — oo, 0], we have

Ca(pop) (i€) :/RODC,L(Cm)ef‘” dl’:/RC’“(cC:c)e’z dx

= CA(N) (IC<) = CDCA(H) (IC)’

and the result then follows from uniqueness of analytic continuation. 0O

Corollary 5.8. The bijection A: ID(x) — ID(H) is invariant under affine
transformations, i.e. if p € ID(x) and ¢ : R — R is an affine transformation,
then

AW () = P(A(w)-

Proof. Let ¢: R — R be an affine transformation, i.e. ¢(t) = ¢t + d, (t € R),
for some constants ¢, d in R. Then for a probability measure p on R, ¢(u) =
Dy x4, and also () = Doy B §4. Assume now that g € ZD(x). Then by
Theorem 5.7,

A@(p)) = A(Dop % 84) = DoA() B A(82) = DeA() B 6y = (A(u),

as desired. O
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As a consequence of the corollary above, we get a short proof of the fol-
lowing result, which was proved by Bercovici and Pata in [BePa99].

Corollary 5.9 ([BePa99]). The bijection A: ID(x) — ID(H) maps the *-
stable probability measures on R onto the H-stable probability measures on
R.

Proof. Assume that p is a x-stable probability measure on R, and let 1, 15 :
R — R be increasing affine transformations on R. Then ) (u) % ¢2(u) =
¥3(p), for yet another increasing affine transformation ¢3: R — R. Now by
Corollary 5.8 and Theorem 5.7(i),

Y1 (A(p) B2 (A(p) = AP (p) B A(Pa(p) = AP (p) * P2(p))

= A(P3(p)) = ¥3(A(n)),

which shows that A(u) is H-stable.
The same line of argument shows that p is #-stable, if A(u) is B-stable. O

Corollary 5.10. Let p be a *-selfdecomposable probability measure on R and
let (f1c)cejo,1) be the family of probability measures on R defined by the equa-
tion:

p= Dep* pic.
Then, for any c in ]0,1[, we have the decomposition:

Al) = DeA(p) 8 A(po). (5.2)

Consequently, a probability measure p on R is x-selfdecomposable, if and only
if A(w) is B-selfdecomposable, and thus the bijection A: ITD(x) — ID(H) maps
the class L(x) of *-selfdecomposable probability measures onto the class L(H)
of B-selfdecomposable probability measures.

Proof. For any ¢ in ]0, 1[, the measures D.u and p. are both s-infinitely di-
visible (see Section 2.5), and hence, by (i) and (ii) of Theorem 5.7,

A(‘LL) = A(Dcluf * ,ufc) = DCA(/’L) H A(Nc)'

Since this holds for all ¢ in ]0, 1], it follows that A(u) is H-selfdecomposable.
Assume conversely that ' is a H-selfdecomposable probability measure on
R, and let (1.)ceo,17 be the family of probability measures on R defined by:

' = Dep B pu..

By Theorem 4.25 and Proposition 4.26, u/,pul, € ID(H), so we may con-
sider the -infinitely divisible probability measures y := A~ (y’) and p, =
A7(pl). Then by (i) and (ii) of Theorem 5.7,

p=A"Np') = A7 (De(p) B ) = AN (DeA(p) B Apee))

= A_l(A(DC,U/* ,LL(/)) = DL,U/* M-

Since this holds for any ¢ in ]0, 1[, p is *-selfdecomposable. O
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To summarize, we note that the Bercovici-Pata bijection A maps each of
the classes G(x), S(*), L(*),ZD(x) in the hierarchy (2.13) onto the correspond-
ing free class in (4.9).

Remark 5.11. Above we have discussed the free analogues of the classical sta-
ble and selfdecomposable laws, defining the free versions via free convolution
properties. Alternatively, one may define the classes of free stable and free
selfdecomposable laws in terms of monotonicity properties of the associated
Lévy measures, simply using the same characterizations as those holding in
the classical case, see Section 2.5. The same approach leads to free analogues
R(E), 7 (H) and B(H) of the classes R(x), 7 (x) and B(x). We shall however
not study these latter analogues here.

Remark 5.12. We end this section by mentioning the possible connection be-
tween the mapping 7%, introduced in Section 3.4, and the notion of a-
probability theory (usually denoted g-deformed probability). For each ¢ in
[—1,1], the so called g-deformed probability theory has been developed by
a number of authors (see e.g. [BoSp91] and [Ni95]). For ¢ = 0, this corre-
sponds to Voiculescu’s free probability and for ¢ = 1 to classical probability.
Since the right hand side of (3.60) interpolates correspondingly between the
free and classical Lévy-Khintchine representations, one may speculate whether
the right hand side of (3.60) (for @ = ¢) might be interpreted as a kind of
Lévy-Khintchine representation for the g-analogue of the cumulant transform
(see [Ni95]).

5.3 Topological Properties of A

In this section, we study some topological properties of A. The key result is the
following theorem, which is the free analogue of a result due to B.V. Gnedenko
(cf. [Gnlo68, §19, Theorem 1]).

Theorem 5.13. Let u be a measure in ZD(8), and let (p,) be a sequence of
measures in TD(B). For each n, let (v,,0,) be the free generating pair for
tn, and let (y,0) be the free generating pair for u. Then the following two
conditions are equivalent:

(i) pn = g, as n — co.
(ii) v — v and 0, > 0, as n — oco.

Proof. (ii) = (i): Assume that (ii) holds. By Theorem 4.12 it is sufficient to
show that

(a) o, (1Y) — o(iy), as n — oo, for all y in ]0, ool.
(b) sup M‘ — 0, as y — oo.
neN Yy
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Regarding (a), note that for any y in |0, oo[, the function ¢ — 11;?;"‘, t eR,
is continuous and bounded. Therefore, by the assumptions in (ii),

. 1 +tiy
G (i) = 7 + / :

R 1y—t n— o0

-
on(dt) — 7+ /R i;jlf o(dt) = ¢u(iy).

Turning then to (b), note that for n in N and y in ]0, oo,
G (1Y) _ / 1+ tiy
A2 = [ 2 g, (dt).
y y yiy—n

Since the sequence (7,,) is, in particular, bounded, it suffices thus to show that

1+t
‘/ _—thy n(dt)‘ — 0, asy— oo. (5.3)
nEN ly _t

For this, note first that since o, — o, as n — oo, and since o(R) < oo, it
follows by standard techniques that the family {0, | n € N} is tight (cf. [Br92,
Corollary 8.11]).

Note next, that for any ¢ in R and any y in |0, oo],

‘ 1+ tiy ‘ 1 N It|
yly — )| = yy2 +)V2 - (y2 + 1)V

From this estimate it follows that

’ 1+ tiy ‘
sup — 2 <
velloolter | Y(iy — 1)

and that for any N in N and y in [1, oo,

‘ Lty | N+1

sup . ’ =
y(iy — 1) Yy

te[—N,N]

From the two estimates above, it follows that for any N in N, and any y in
[1, 00[, we have

1+t N+1
SUp)/ + AT uy dt)‘ < + SUPUn([—NJV])+2~SUpan([—N,N]C)
neN ly_t Y neN neN

N+1
* sup o, (R) 4 2 - sup o, ([—N, NJ°).
Y neN neN

IN

(5.4)

Now, given € in |0, o[ we may, since {o,, | n € N} is tight, choose N in N, such
that sup, ey on([—N, N]¢) < £. Moreover, since o, — ¢ and o(R) < oo, the
sequence {0, (R) | n € N} is, in particular, bounded, and hence, for the chosen
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N, we may subsequently choose g in [1, co[, such that N 'H

Using then the estimate in (5.4), it follows that

1+t
‘/ A4ty oo (dt)] <
nGN ly - t

whenever y > yo. This verifies (5.3).
(i) = (ii): Suppose that j,, > p, as n — oc. Then by Theorem 4.12, there
exists a number M in ]0, co[, such that

(c) Vy € [M, OO[ b, (iy) — du(iy), as n — oo.
o s

nGN

P, 7 (R) < §.

0, as y — 0.

We show first that the family {o, | n € N} is conditionally compact
w.r.t. weak convergence, i.e. that any subsequence (0,/) has a subsequence
(o), which converges weakly to some finite measure o* on R. By [Gnl<o68,
§9, Theorem 3 bis], it suffices, for this, to show that {0, | n € N} is tight,
and that {0, (R) | n € N} is bounded. The key step in the argument is the
following observation: For any n in N and any y in ]0, oo[, we have,

o 1+ tiy
—Im¢,, (iy) = Im(wn —l—/R - O'n(dt)>

1+t 14+t
,Im(/ .Jr ad Un(dt)) :y/ % op(dt).
R ly—t rY-+t

We show now that {0, | n € N} is tight. For fixed y in ]0, co[, note that

2
{t6R||t\2y}g{teR|yl;jft2 > 1

so that, for any n in N,

1 t2 . .
on({lteR ||t > y}) < 2/ ~ U (an) = _21m(¢’“"(1y>) < 2‘ Dun (19) ‘
RY T+ Y Y
Combining this estimate with (d), it follows immediately that {c,, | n € N} is
tight.
We show next that the sequence {0, (R) | n € N} is bounded. For this,

note first that with M as in (c), there exists a constant ¢ in |0, co], such that
M(1+ ¢
c< ﬁ, for all ¢t in R.

Tt follows then, by (5.5), that for any n in N,

con(R) < M(1+1t%)

S L awrie on(dt) = —Ime,, (iM),
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and therefore by (c),
lim sup o, (R) < lim sup{ —c ! -Img,,, (ZM)} =—c! -Ime,, (1M) < oo,

n—oo n—0o0
which shows that {0, (R) | n € N} is bounded.

Having established that the family {o,, | n € N} is conditionally compact,
recall next from Remark 2.3, that in order to show that o, — o, it suffices to
show that any subsequence (0,) has a subsequence, which converges weakly to
o. A similar argument works, of course, to show that v, — . So consider any
subsequence (7,7, 0,/) of the sequence of generating pairs. Since {o,, | n € N}
is conditionally compact, there is a subsequence (n”’) of (n’), such that the
sequence (o,) is weakly convergent to some finite measure c* on R. Since
the function t — % is continuous and bounded for any y in ]0, co[, we know

then that L Lo
/ + 1y O'n//(dt) . / + 1y O'*(dt),
R 1y—1 n—oo Jp 1y —1
for any y in |0, c0[. At the same time, we know from (c) that

1+ tiy . . 1+ tiy
n'! n’’ dt) = " - N
gt +/R g (dt) = @y, (iy) — du(iy) 7+/R -

o(dt),

for any y in [M, oo[. From these observations, it follows that the sequence
(Yn7) must converge to some real number +*, which then has to satisfy the

identity:

B 1+ty . 1+ tiy

~ +/ y o (dt):¢u(1y)=7+/ . o(dt),
R 1y—1 R

for all y in [M, oo[. By uniqueness of the free Lévy-Khintchine representation
(cf. Theorem 4.14) and uniqueness of analytic continuation, it follows that
we must have c* = o and v* = . We have thus verified the existence of a
subsequence (v, 0y,) which converges (coordinate-wise) to (v, o), and that
was our objective. O

As an immediate consequence of Theorem 5.13 and the corresponding
result in classical probability, we get the following

Corollary 5.14. The Bercovici-Pata bijection A: ID(x) — ZTD(8) is a home-
omorphism w.r.t. weak convergence. In other words, if p is a measure in TD(x)

and () is a sequence of measures in TD(x), then i, ~ p, as n — oo, if and
only if Alu,) ~ A(p), asn — oo.

Proof. Let (v,0) be the generating pair for 1 and, for each n, let (y,,0,) be
the generating pair for fi,.

Assume first that p,, — p. Then by [CGnlKo68, §19, Theorem 1], 4, — 7
and o,, — . Since (v, 0,,) (respectively (v, o)) is the free generating pair for
A(pn) (vespectively A(p)), it follows then from Theorem 5.13 that A(u,) ~
A(p).

The same argument applies to the converse implication. 0O
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We end this section by presenting the announced proof of property (v)
in Theorem 3.18. The proof follows easily by combining Theorem 5.5 and
Theorem 5.13.

Proof of Theorem 3.18(v).

Let w, pu1, 12, i43, - - ., be probability measures in ZD(x), such that p, o,
as n — oo. We need to show that Y'(p,) — (i) as n — oo. Since A is
continuous w.r.t. weak convergence, A(u,) ~ A(y), as n — oo, and this
implies that C,(,, )(i¢) — Ca(y)(i¢), as n — oo, for any ¢ in | — 00, 0] (use e.g.
Theorem 5.13). Thus,

CT(MH)(C) = CA(un)(iC) njgo C/I(M) (IC) = CT(,LL) (C)v

for any negative number ¢, and hence also fr(,,)(¢) = exp(Cr(,,)(()) —
exp(Cru)(€)) = frw(¢), as n — oo, for such ¢. Applying now complex
conjugation, it follows that fr(,.)(¢) — fr(.,)(C), as n — oo, for any (non-

zero) ¢, and this means that ¥'(u,) — ¥'(1), as n — 0. O

5.4 Classical vs. Free Lévy Processes

Consider now a free Lévy process (Z;);>0, with marginal distributions (1).
As for (classical) Lévy processes, it follows then, that each p; is necessarily
H-infinitely divisible. Indeed, for any n in N we have: Z; = Z?:l(th /n —
Z(j—1)t/n), and thus, in view of conditions (i) and (iii) in Definition 4.27,
My = pyyn BBy m (n terms). From the observation just made, it follows that
the Bercovici-Pata bijection A: ZD(x) — ZD(H) gives rise to a correspondence

between classical and free Lévy processes:

Proposition 5.15. Let (Z,);>0 be a free Lévy process (in law) affiliated with
a W*-probability space (A, T), and with marginal distributions (u:). Then
there exists a (classical) Lévy process (Xi)i>0, with marginal distributions
(A (1u)).

Conversely, for any (classical) Lévy process (X¢) with marginal distribu-
tions (ut), there exists a free Lévy process (in law) (Z;) with marginal distri-
butions (A(pt)).

Proof. Consider a free Lévy process (in law) (Z;) with marginal distributions
(11¢). Then, as noted above, p; € ZD(H) for all ¢, and hence we may define
wy = A7 (), t > 0. Then, whenever 0 < s < ¢,

prp = A" s B—s) = A7 (s) % A pems) = gl * s

Hence, by the Kolmogorov Extension Theorem (cf. [S299, Theorem 1.8]), there
exists a (classical) stochastic process (X;) (defined on some probability space
(2, F,P)), with marginal distributions (u}), and which satisfies conditions
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(i)-(iii) of Definition 2.2. Regarding condition (iv), note that since (Z;) is a
free Lévy process, iy — 6o as t \, 0, and hence, by continuity of A=" (cf.
Corollary 5.14),

Hy = A7 (1) S A7 (80) = G, as £\, 0.

Thus, (X:) is a (classical) Lévy process in law, and hence we can find a
modification of (X;) which is a genuine Lévy process.

The second statement of the proposition follows by a similar argument,
using A rather than A~', and that the marginal distributions of a classical
Lévy process are necessarily *-infinitely divisible. Furthermore, we have to call
upon the existence statement for free Lévy processes (in law) in Remark 4.28.

O

Ezample 5.16. The free Brownian motion is the free Lévy process (in law),
(Wi)e>0, which corresponds to the classical Brownian motion, (By);>0, via the
correspondence described in Proposition 5.15. In particular (cf. Example 5.3),

1
LiWii(ds) = 5Vt = s 1_ g g (s)ds,  (t>0).

Remark 5.17. (Free additive processes II) Though our main objectives in
this section are free Lévy processes, we mention, for completeness, that the
Bercovici-Pata bijection A also gives rise to a correspondence between classical
and free additive processes (in law). Thus, to any classical additive process (in
law), with corresponding marginal distributions (x;) and increment distribu-
tions (fs,¢)o<s<t, there corresponds a free additive process (in law), with mar-
ginal distributions (A(u;)) and increment distributions (A(us))o<s<¢. And
vice versa.

This follows by the same method as used in the proof of Proposition 5.15
above, once it has been established that for a free additive process (in law)
(Z;), the distributions py = L{Z;} and psy = L{Z; — Zs}, 0 < s < t, are
necessarily H-infinitely divisible (for the corresponding classical result, see
[5299, Theorem 9.1]). The key to this result is Theorem 4.18, together with
the fact that (Z;) is actually uniformly stochastically continuous on com-
pact intervals, in the following sense: For any compact interval [0, b] in [0, oo,
and for any positive numbers €, p, there exists a positive number § such that
s t(R\ [—€,€]) < p, for any s,t in [0,b], for which s < ¢t < s+ J. As in the
classical case, this follows from condition (iv) in Definition 4.27, by a standard
compactness argument (see [5299, Lemma 9.6]). Now for any ¢ in [0, oo[ and
any n in N, we have (cf. (4.21)),

Kt = Ho,t/n H Ht/n,2t/n &) M2t /n,3t/n BB H(n—1)t/n,t- (56)

Since (Z;) is uniformly stochastically continuous on [0,¢], it follows that the
family {p—1)i/nji/m | m € N, 1 < j < n} is a null-array, and hence, by
Theorem 4.18, (5.6) implies that p; is E-infinitely divisible. Applying then
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this fact to the free additive process (in law) (Z; — Z)¢>s, it follows that also
fts,¢ is E-infinitely divisible whenever 0 < s < ¢.

Remark 5.18. (An alternative concept of free Lévy processes) For a
classical Lévy process (X;), condition (iii) in Definition 2.2 is equivalent to the
condition that whenever 0 < s < t, the conditional distribution Prob(X; | Xj)
depends only on ¢ — s. Conditional probabilities in free probability were stud-
ied by Biane in [3198], and he noted, in particular, that in the free case, the
condition just stated is not equivalent to condition (iii) in Definition 4.27.
Consequently, in free probability there are two classes of stochastic processes,
that may naturally be called Lévy processes: The ones we defined in Defini-
tion 4.27 and the ones for which condition (iii) in Definition 4.27 is replaced
by the condition on the conditional distributions, mentioned above. In [3198]
these two types of processes were denoted FAL1 respectively FAL2. We should
mention here that in [B198], the assumption of stochastic continuity (condition
(iv) in Definition 4.27) was not included in the definitions of neither FAL1
nor FAL2. We have included that condition, primarily because it is crucial for
the definition of the stochastic integral to be constructed in the next section.

6 Free Stochastic Integration

In the classical setting, stochastic integration with respect to Lévy processes
and to Poisson random measures is of key importance. This Section establishes
base elements of a similar theory of free stochastic integration. As applications,
a representation of free selfdecomposable variates as stochastic integrals is
given and free OU processes are introduced. Furthermore, the free Lévy-Ito
decomposition is derived.

6.1 Stochastic Integrals w.r.t. free Lévy Processes

As mentioned in Section 2.3, if (X;) is a classical Lévy process and f: [A, B] —
R is a continuous function defined on an interval [A, B] in [0, co[, then the

stochastic integral ff f(t) dX; may be defined as the limit in probability of
approximating Riemann sums. More precisely, for each n in N, let D,, =
{tn.0:tn1,-..,tnn} be asubdivision of [A, B], i.e.

A=tpg<tpy <- <tpn=B.
Assume that
li ;— 1) =0. 1
i max (g = tnjo1) =0 (6.1)

Moreover, for each n, choose intermediate points:

t# € ftngtstngls J=1,2,...,m. (6.2)
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Then the Riemann sums

STL = Zf(ti]) : (th,j - th-,j—l)’

Jj=1
converge in probability, as n — oo, to a random variable S. Moreover, this

random variable S does not depend on the choice of subdivisions D,, (satisfy-
ing (6.1)), nor on the choice of intermediate points tf, .. Hence, it makes sense
to call S the stochastic integral of f over [A, B] w.r.t. (X;), and we denote S
by [ f(t) dX;.

The construction just sketched depends, of course, heavily on the stochas-
tic continuity of the Lévy process in law (X;) (condition (iv) in Definition 2.2).
A proof of the assertions made above can be found in [Lu75, Theorem 6.2.3].
We show next how the above construction carries over, via the Bercovici-Pata
bijection, to a corresponding stochastic integral w.r.t. free Lévy processes (in
law).
Theorem 6.1. Let (Z;) be a free Lévy process (in law), affiliated with a W*-
probability space (A, 7). Then for any compact interval [A, B] in [0,00[ and
any continuous function f: [A, B] — R, the stochastic integral ff f(t) dZ;
exists as the limit in probability (see Definition 4.3) of approximating Riemann
sums. More precisely, there exists a (unique) selfadjoint operator T affiliated
with (A,T), such that for any sequence (Dp)nen of subdivisions of [A, B],
satisfying (6.1), and for any choice of intermediate points tﬁj, as in (6.2),
the corresponding Riemann sums

T, = Zf(tfg) 2ty = 2,520,
j=1

converge in probability to T as n — oco. We call T' the stochastic integral of f
over [A, B] w.r.t. (Z), and denote it by ff f(t) dZ;.

In the proof below, we shall use the notation:
Wty = ek and B = BB,
for probability measures 1, ..., 1, on R.
Proof of Theorem 6.1. Let (Dy,)nen be a sequence of subdivisions of [A, B]

satisfying (6.1), let tﬁj be a family of intermediate points as in (6.2), and
consider, for each n, the corresponding Riemann sum:

n

T, =Y ftr,) (Z,, 2, ) €A

Jj=1

We show that (7},) is a Cauchy sequence w.r.t. convergence in probability or,
equivalently, w.r.t. the measure topology (see the Appendix). Given any n,m
in N, we form the subdivision
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A=350<s1 < < Sp(n,m) = B,

which consists of the points in D,, U D,, (so that p(n,m) < n + m). Then,
for each j in {1,2,...,p(n,m)}, we choose (in the obvious way) sﬁj in {tffk |
k=1,2,...,n} and sn#m in {tﬁk | E=1,2,...,m} such that

p(n,m) p(n,m)
T, = Z f(sf,g)(zsj 7ZS_7‘—1) and T = Z f(sfz,j)'(zsj 7ZSj—1)'
j=1 j=1
It follows then that
p(n,m)
To=Tn= Y (flsi)) = f(sh ) - (Zs; = Zs, )
j=1

Let (u¢) denote the family of marginal distributions of (Z;), and then con-
sider a classical Lévy process (X;) with marginal distributions (A~ (s)) (cf.
Proposition 5.15). For each n, form the Riemann sum

Sn = Zf(tij> : (th,j - th,jfl)’
j=1

corresponding to the same D,, and tfﬁ ; as above. Then for any n,m in N, we
have also that

p(n,m)
Sy — Sm = Z (f(Sf]) - f(sfﬁn,j)) ’ (XSJ' - XSJ‘—l)'
j=1

From this expression, it follows that

L{Su = Sm} =D, AKX, = X, 0}

(Sﬁ,j)_f(sn#@,j

_ p(n,m) -1
=*i= Df(sf,j)_f(sﬁ,j)/l (MSj—Sj71)7

so that (by Theorem 5.7),

A(L{Sn = Sm}) = Eﬂﬁg’m)Df(sf.ﬁ—f(sﬁ,ﬁ“Sa‘—Sa'—l

= L{T, — T}

We know from the classical theory (cf. [Lu75, Theorem 6.2.3]), that (S,) is a

Cauchy sequence w.r.t. convergence in probability, i.e. that L{S, —S,,} ~ do,
as n, m — oo. By continuity of A, it follows thus that also
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L{T,, — T,,} = A(L{S,, — Sp}) = A(60) = 69, as n,m — oo.

By Proposition A.8, this means that (7)) is a Cauchy sequence w.r.t. the
measure topology, and since A is complete in the measure topology (Proposi-
tion A.5), there exists an operator T in A, such that T,, — T in the measure
topology, i.e. in probability. Since T, is selfadjoint for each n (see the Appen-
dix) and since the adjoint operation is continuous w.r.t. the measure topology
(Proposition A.5), T is necessarily a selfadjoint operator.

It remains to show that the operator 7', found above, does not depend
on the choice of subdivisions (D,,) or intermediate points t . Suppose thus
that (T;,) and (7)) are two sequences of Riemann sums of the klnd considered
above. Then by the argument given above, there exist operators T and T’ in
A, such that T,, — T and T/, — T’ in probability. Furthermore, if we consider
the “mixed sequence” Ty,T4,T5,Ty, ..., then the corresponding sequence of
subdivisions also satisfies (6.1), and hence this mixed sequence also converges
in probability to an operator 7" in A. Since the mixed sequence has subse-
quences converging, in probability, to T and T’ respectively, and since the
measure topology is a Hausdorff topology (cf. Proposition A.5), we may thus
conclude that T =T" =T, as desired. O

The stochastic integral f A t) dZ;, introduced above, extends to continuous
functions f: [A,B] — C in the usual way (the result being non-selfadjoint in
general). From the construction of ff f(t) dZ; as the limit of approximating
Riemann sums, it follows immediately that whenever 0 < A < B < C, we
have

[ F@) Az, = [ () dZ + [§ f(t) dZ,

for any continuous function f: [A, C] — C. Another consequence of the con-
struction, given in the proof above, is the following correspondence between
stochastic integrals w.r.t. classical and free Lévy processes (in law).

Corollary 6.2. Let (X;) be a classical Lévy process with marginal distribu-
tions (ue), and let (Zy) be a corresponding free Lévy process (in law) with
marginal distributions (A(ue)) (cf. Proposition 5.15). Then for any compact
interval [A, B] in [0 oo[ and any continuous function f: [A,B] — R, the
distributions L{fA t) dX;} and L{fA t) dZ:} are x-infinitely divisible
respectively H- znﬁmtely divisible and, moreover

LY 1) 4Z,} = A[L{ [ £(2) dX0}].

Proof. Let (Dy,)nen be a sequence of subdivisions of [A, B] satisfying (6.1),
let tf j bea family of intermediate points as in (6.2), and consider, for each
n, the corresponding Riemann sums:

Sn = Z f(tﬁj) ' (th,j - th,j—l) and Tn = Z f(tf,j) ! (Ztn,j - Ztn,j—l)'
j=1 j=1
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Since convergence in probability implies convergence in distribution (Proposi-
tion A. 9) it follows from [Lu75, Theorem 6.2. 3} and Theorem 6.1 above, that
L{S,} = L{fA t) dX;} and L{T,} > L{fA t) dZ;}. Since ZD(x) and
ID(B) are closed w.r.t. weak convergence (as noted in Section 4.5), it follows
thus that L{fA t) dX;} € ID(x) and L{fA t) dZ;} € ID(H). Moreover,
by Theorem 5.7, L{T,,} = A(L{S,}), for each n in N, and hence the last
assertion follows by continuity of A. a

6.2 Integral Representation of Freely Selfdecomposable Variates

As mentioned in Section 2.5, a (classical) random variable Y has distribution
in L(x) if and only if it has a representation in law of the form

y < / et dX,, (6.3)
0

where (X¢);>0 is a (classical) Lévy process, satisfying the condition E[log(1 +
|X1])] < co. The aim of this section is to establish a similar correspondence
between selfadjoint operators with (spectral) distribution in £(B) and free
Lévy processes (in law).

The stochastic integral appearing in (6.3) is the limit in probability, as
R — oo, of the stochastic integrals fOR e tdXy,, i.e. we have

R 0o
/ e tdx, > / e 'dX,, as R — oo,
0 0

(the convergence actually holds almost surely; see Proposition 6.3 below). The
stochastic integral fOR et dX, is, in turn, defined as the limit of approximating
Riemann sums as described in Section 6.1

For a free Lévy process (Z;), we determine next under which conditions
the stochastic integral fooo e~! dZ, makes sense as the limit, for R — oo, of the

stochastic integrals fOR e~tdZ,, which are defined by virtue of Theorem 6.1.
Again, the result we obtain is derived by applications of the mapping A and
the following corresponding classical result:

Proposition 6.3 ([JuVe83]). Let (X;) be a classical Lévy process defined on
some probability space (2, F, P), and let (v,0) be the generating pair for the
x-infinitely divisible probability measure L{X,}. Then the following conditions
are equivalent:

i) fR\ . 1[log(l + [t]) o(dt) < oco.
ii) fo —t dX; converges almost surely, as R — oo.

iii) f v dX; converges in distribution, as R — oc.

(
(
(
(iv) Ellog(1 + | X1])] < oc.
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Proof. This was proved in [JuVe&3, Theorem 3.6.6]. We note, though, that in
[JuVes3], the measure o in condition (i) is replaced by the Lévy measure p
appearing in the alternative Lévy-Khintchine representation (2.2) for L{X1}.
However, since p(dt) = 1'[—;2 “1r\foy(t) o(dt), it is clear that the integrals
fR\]l_l’l[ log(1 + [¢]) p(dt) and fR\]—m[lOg(l + [t]) o(dt) are finite simultanelz—,
ously.

Proposition 6.4. Let (Z;) be a free Lévy process (in law) affiliated with a
W*-probability space (A, T), and let (v, o) be the free generating pair for the B-
infinitely divisible probability measure L{Z1}. Then the following statements
are equivalent:

(i) fR\]qJ[lOg(l +[t]) o(dt) < .
(ii) fOR et dZ; converges in probability, as R — oo.

(iii) fOR e~ dZ; converges in distribution, as R — oc.

Proof. Let (u:) be the family of marginal distributions of (Z;) and consider
then a classical Lévy process (X;) with marginal distributions (A7 (p;)) (cf.
Proposition 5.15). By the definition of A, it follows then that (v,0) is the
generating pair for the x-infinitely divisible probability measure L{X;}.

(i) = (ii): Assume that (i) holds. Then condition (i) in Proposition 6.3 is
satisfied for the classical Lévy process (X;). Hence by (ii) of that proposition,
fOR et dX,; converges almost surely, and hence in probability, as R — oo.
Consider now any increasing sequence (R,) of positive numbers, such that
R, / oo, as n — oco. Then for any m,n in N such that m > n, we have by
Corollary 6.2

L{ foRm e tdz, — foRn et dZ} =L f}é{: et dz,} = A[L{ fl??:n e dX}]

= A[L{ [T et dX, — [T et dX,}].
(6.4)

Since the sequence ( fOR" et dX;)nen is a Cauchy sequence with respect to
convergence in probability, it follows thus, by continuity of A, that so is the se-
quence (fOR" e~ " dZ;)nen. Hence, by Proposition A.5, there exists a selfadjoint

operator W affiliated with (A, 7), such that fOR" e~ dZ, — W in probabil-
ity. It remains to argue that W does not depend on the sequence (R, ). This
follows, for example, as in the proof of Theorem 6.1, by considering, for two
given sequences (R,,) and (R}), a third increasing sequence (R)), containing
infinitely many elements from both of the original sequences.

(ii) = (i): Assume that (ii) holds. It follows then by (6.4) and continuity
of A71 that for any increasing sequence (R,,), as above, (fOR” et dX;) is a
Cauchy sequence w.r.t. convergence in probability. We deduce that (iii) of
Proposition 6.3 is satisfied for (X}), and hence so is (i) of that proposition. By
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definition of (X}), this means exactly that (i) of Proposition 6.4 is satisfied
for (Z;).

(if) = (iil): This follows from Proposition A.9.

(iii)=-(i): Suppose (iii) holds, and note that the limit distribution is nec-
essarily H-infinitely divisible. Now by Corollary 6.2 and continuity of A1,
condition (iii) of Proposition 6.3 is satisfied for (X;), and hence so is (i) of
that proposition. This means, again, that (i) in Proposition 6.4 is satisfied for
(Z1). o

If (Z;) is a free Lévy process (in law) affiliated with (A, 7), such that (i)
of Proposition 6.4 is satisfied, then we denote by fooo e~t dZ; the selfadjoint

operator affiliated with (A, 7), to which fOR et dZ; converges, in probability,
as R — oo. We note that L{[;"e™" dZ;} is B-infinitely divisible, and that
Corollary 6.2 and Proposition A.9 yield the following relation:

L{[Cetdz,} = A[L{ [[Te " dX,}], (6.5)

where (X;) is a classical Lévy process corresponding to (Z;) as in Proposi-
tion 5.15.

Theorem 6.5. Let y be a selfadjoint operator affiliated with a W*-probability
space (A, 7). Then the distribution of y is B-selfdecomposable if and only if y
has a representation in law in the form:

d (o)
Yy :/ e ' dz;, (6.6)
0

for some free Lévy process (in law) (Z;) affiliated with some W*-probability
space (B,v), and satisfying condition (i) of Proposition 6.4.

Proof. Put pn = L{y}. Suppose first that p is B-selfdecomposable and put
w' = A71(u). Then, by Corollary 5.10, p is *-selfdecomposable, and hence by
the classical version of this theorem (cf. [JuVes3, Theorem 3.2]), there exists
a classical Lévy process (X;) defined on some probability space ({2, F, P),
such that condition (i) in Proposition 6.3 is satisfied, and such that A= (u) =
L{[;° e~ dX,}. Let (Z;) be a free Lévy process (in law) affiliated with some
W*-probability space (B, 1), and corresponding to (X) as in Proposition 5.15.
Then, by definition of A, condition (i) in Proposition 6.4 is satisfied for (Z;)
and, by formula (6.5), L{[;"e™" dZ;} = p.

Assume, conversely, that there exists a free Lévy process (in law) (Z;)
affiliated with some W*-probability space (B,), such that condition (i) of
Proposition 6.4 is satisfied, and such that u = L{foOO e " dZ;}. Then consider
a classical Lévy process (X;) defined on some probability space (2, F, P), and
corresponding to (Z;) as in Proposition 5.15. Condition (i) in Proposition 6.3
is then satisfied for (X;) and, by (6.5), A™*(u) = L{ [,  e~" dX;}. Thus, by
the classical version of this theorem, A~!(p) is *-selfdecomposable, and hence
1 is B-selfdecomposable. 0O
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Remark 6.6 (Free OU processes). Let y be a selfadjoint operator affiliated
with some W*-probability space (A, 7), and assume that there exists a free
Lévy process (in law) (Z;) affiliated with some W*-probability space (B, 1)),

such that condition (i) of Proposition 6.4 is satisfied, and such that y 4
foo et dZ;. Note then, that for any positive numbers s, \, we have

0
/ e tdz, = / e MAzy, = / e MdAZy + / e M dZy
0 0 s 0
[e%) As
= e_)\s/ e_)\t dZ)\(S+t) +/ e_t dZt,
0 0

where we have introduced integration w.r.t. the processes V; = Z); and W; =
Zx(s+t), t = 0. The rules of transformation for stochastic integrals, used above,
are easily verified by considering the integrals as limits of Riemann sums. That
same point of view, together with the fact that (Z;) has freely independent
stationary increments (conditions (i) and (iii) in Definition 4.27), implies,
furthermore, that fooo e M dZy (st 4 fooo M 47y, & y. Note also that the
two terms in the last expression of (6.7) are freely independent. Thus, (6.7)
shows, that for any positive numbers s, A, we have a decomposition in the form:

(6.7)

Y 4 e My(N, s)+u(, s), where y(A, s) and u(X, s) are freely independent, and

where y(A, s) 4 y. In particular, we have verified, directly, that L{y} is -
selfdecomposable. Moreover, if we choose a selfadjoint operator Yj affiliated
with (B, 1), which is freely independent of (Z;), and such that L{Yy} = L{y}
(extend (B, ) if necessary), then the expression:

As
Y, =e MY +/ e dZ, (s>0),
0

defines an operator valued stochastic process (Y;) affiliated with (B, ), sat-
isfying that Y < y for all s. If we replace (Z;) above by a classical Lévy
process (X3), satisfying condition (i) in Proposition 6.3, and let Yy be a (clas-
sical) random variable, which is independent of (X;), then the corresponding
process (Y) is a solution to the stochastic differential equation:

dYg = 7>\Yg dS + dXAS;

and (Y3) is said to be a process of Ornstein-Uhlenbeck type or an OU process,
for short (cf. [BaShOla],[BaSh01b] and references given there).

6.3 Free Poisson Random Measures

In this section, we introduce free Poisson random measures and prove their
existence. We mention in passing the related notions of free stochastic mea-
sures (cf. [An00]) and free white noise (cf. [Sp90]). We mention also that the
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existence of free Poisson random measures was established by Voiculescu in
[Vo98] in a different way than the one presented below. Recall, that for any
number A in [0, co[, we denote by Poiss® () the free Poisson distribution with
mean \ (cf. Example 5.3).

Definition 6.7. Let (©,&,v) be a measure space, and put
Ey={E €& |v(E) <}

Let further (A, T) be a W*-probability space, and let Ay denote the cone of
positive operators in A. Then a free Poisson random measure on (0, &, v) with
values in (A, T), is a mapping M: & — A, with the following properties:

(i) For any set E in &, L{M(E)} = Poiss® (v(E)).

(ii) If r e N and Ey, ..., E, are disjoint sets from &y, then M(Ey), ..., M(E,)
are freely independent operators.

(iii) If r € N and Ei, ..., E, are disjoint sets from &, then M(Ui_ E;) =

Z;:1 M (EJ)

In the setting of Definition 6.7, the measure v is called the intensity mea-
sure for the free Poisson random measure M. Note, in particular, that M (F)
is a bounded positive operator for all E in &. The definition above might seem
a little “poor”compared to that of a classical Poisson random measure. The
following remark might offer a bit of consolation.

Remark 6.8. Suppose M is a free Poisson random measure on the measure
space (©,&,v) with values in the W*-probability space (A, 7). Let further
(Ey,) be a sequence of disjoint sets from &. If we assume, in addition, that
UjenF; € &, then we also have that

w(Us) =S

where the right hand side should be understood as the limit in probability (see
Definition 4.3) of 37| M(E};) as n — oo.
Indeed, put £ = UjenE;, and assume that £ € &. Then for any n in N,

M(E) - Zn: M(E;) = M(E) = M(Uj_, Ej) = M(UFZ,, 11 Ej),

so that

n

L{M(E) -3 M(Ej)} — Poiss® (V(U2,..1 E))

Jj=1
= POiSSEE (Z?in+1 V(E])) L 60,

as n — oo, since 377 . v(E;) — 0 as n — oo, because > 22 v(E;) =
v(E) < .
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The main purpose of the section is to prove the general existence of free
Poisson random measures.

Theorem 6.9. Let (0,E,v) be a measure space. Then there exists a W*-
probability space (A, T) and a free Poisson random measure M on (0,E,v)
with values in (A, T).

The proof of Theorem 6.9 is given in a series of lemmas. First of all, though,
we introduce some notation:
If w1, po, ..., p, are probability measures on R, we put (as in Section 6.1)

h%lﬂh:,ul*lm*"‘*ﬂr and h@lﬂhzﬂlEﬂQE“'BﬂNw

In the remaining part of this section, we consider the measure space (©,&,v)
appearing in Theorem 6.9. Consider then the set

Z=|J{(By,....B) | Br,..., By € &\ {0} and Ex,..., Ej, are disjoint},
keN

where we think of (Fy,..., Ey) merely as a collection of sets from &. In par-
ticular, we identify (E1,..., Ey) with (Eq(1),..., Exx)) for any permutation
mof {1,2,...,k}. We introduce, furthermore, a partial order < on Z by the
convention:

(Er,...,Ey) < (F1,...,F}) <= each E; is a union of some of the F}’s.

Lemma 6.10. Given a tuple S = (E1,...,Ey) from I, there exists a W*-
probability space (Ag,Ts), which is generated by freely independent positive
operators Mg(Ey), ..., Mg(Ey) from Ag, satisfying that

L{Mgs(E;)} = Poiss® (W(E;)),  (i=1,....k).

Proof. This is an immediate consequence of Voiculescu’s theory of (reduced)
free products of von Neumann algebras (cf. [VoDyNi92]). Indeed, we may
take (Ag, Ts) to be the (reduced) von Neumann algebra free product of the
Abelian W*-probability spaces (L (R, p;),E,,), ¢ = 1,...,k, where p; =
Poiss®(v(E;)) and E,, denotes expectation with respect to p;. i

Lemma 6.11. Consider two elements S = (Ey,...,Ey) and T = (Fy,..., F})
of T, and suppose that S < T. Consider the W*-probability spaces (Ag,Ts)
and (Ap, 1) given by Lemma 6.10. Then there exists an injective, unital,
normal *-homomorphism vgr: As — Ar, such that T = T o Lg 1.

Proof. We adapt the notation from Lemma 6.10. For any fixed ¢ in {1, ..., k},
we have that E; = Fj(; 1)U- - -UFj(,,), for suitable (distinct) j(i,1),...,5(i, ;)
from {1,2,...,1}. Note then that
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L{Mz(Fji0) + -+ Mp(Fji0,)} = hééll POissEEl(V(Fj(i,h)))
= Poiss® (V(Fji1) + - + v(Fja))
= Poiss™ (v(Fj(;1) U+ - U Fy1,)))

= Poiss®(V(E))) = L{Ms(E;)}.

In addition, Mg(FE1),..., Mg(F)) are freely independent selfadjoint opera-
tors, and, similarly, the operators 21}221 Mr(Fjiny), i = 1,...,k are freely
independent and selfadjoint. Combining these observations with [Vo90, Re-
mark 1.8], it follows that there exists an injective, unital, normal *-homomor-
phism ¢g7: Ag — Arp, such that

ts,7(Ms(E;)) = Mp(Fjy) + -+ Mrp(Fja,)), (i=1,2,...,1), (6.8)
and such that 7¢ = 7p 0 15 7. 0O
Lemma 6.12. Adapting the notation from Lemmas 6.10-0.11, the system

(Ag,78)sez, {tsr|STeZ, S<T}, (6.9)

s a directed system of W*-algebras and injective, unital, normal x-homomor-
phisms (cf. [KaRi83, Section 11.4]).

Proof. Suppose that R = (D1,...,Dp,), S = (E1,...,Ey)and T = (Fy,..., F})
are elements of 7, such that R < S < 7. We have to show that tpr =
ts,T © tr,s. We may write (unambiguously),

Dh:Ei(h,l)U"'UEi(h,kh)a (}L::I.,...7TTL)7
EZ:F](z,l)UUE](z,l7)7 (Z:1,7]€),

for suitable i(h,1),...,i(h,kp) in {1,2,...,k} and j(i,1),...,5(4 ;) in
{1,2,...,1}. Then for any h in {1,...,m}, we have

Litn,1) Lith k)
Dy = Eijn1y U UEip k) ( U G(i(h1),r ) ( U G (hokn), r))
so that, by definition of tg 1, tr,s and tgp (cf. (6.8)),

Lith,1) Lih,kp,)

tr,7(Dp) = Z Mr(Fjihay,m) + -+ Z M1 (Fj¢ihkn),r))

r=1

=1ts,T [MS(Ei(h,l))] +e s [MS(Ei(h,kh,))]
=157[Ms(Ein1) + -+ Ms(Ein k)]

= 15,7 [tr,s(Dp)].
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Since Ag is generated, as a von Neumann algebra, by the operators
MR(Dl)v R MR(Dm)7

and since tr 7 and 157 0otR s are both normal *-homomorphisms, it follows by
Kaplansky’s density theorem (cf. [[<aRi83, Theorem 5.3.5]) and the calculation
above that tp 7 = g7 0 LR,g, as desired. o

Lemma 6.13. Let A° denote the C*-inductive limit of the directed system
(6.9) and let 1s: Ag — A° denote the canonical embedding of Ag into A° (cf.
[KaRi83, Proposition 11.4.1]). Then there is a unique tracial state 79 on A°,
satisfying that

75 = 7% 013, forall S inT. (6.10)

Proof. Recall that the canonical embeddings ts: As — A° (S € I) satisfy
the condition:

LR = LS OLR,S, whenever R,S €7 and R < S.

We note first that (6.10) gives rise to a well-defined mapping 7° on the set
A% = Ugezts(As). Indeed, suppose that tg(a’) = tr(a”) for some S, T in T
and @’ € Ag, o’ € Ar. We need to show that 7g(a’) = 7r(a”). Let SV T
denote the tuple in 7 consisting of all non-empty sets of the form ENF, where
E e Sand F €T. Note that S,T" < SVT. Since tg = tgyr ots,syr and 17 =
Lsvr © Lt gy, it follows, by injectivity of tgyr, that vs syr(a’) = tr syr(a”).
Hence, by Lemma 6.11,

7s(a') = Tsvr o tg,svr(a’) = Tsyr o i syr(a’) = Tr(d”),

as desired. Now, given a,b in A%, we can find S from Z, such that a,b are
both in ts(Ag), and hence it follows immediately that 7° is a linear tracial
functional on the vector space A%. Furthermore, if a = tg(a’) for some a’ in
Ag, then
0
™ (a)] = 7s(a)| < lla'|| = [les(a”)[| = [|all,

so that 70 is norm decreasing. Since A% is norm dense in A° (cf. [KaRis3,
Proposition 11.4.1]), if follows then that 7° has a unique extension to a map-
ping 7°: A° — C, which is automatically linear, tracial and norm-decreasing.

In addition, 79(1 40) = 1 = ||7°||, so, altogether, it follows that 7° is a tracial
state on A, satisfying (6.10). O

Lemma 6.14. Let (A% 7°) be as in Lemma 6.13. There evists a mapping
MO: & — AY, which satisfies conditions (i)-(iii) of Definition 6.7.

Proof. We define M° by the equation:

M°(E) = 1 my (Mg} (E)), (B € &).
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Then M°(E) is positive for each E in &, since t{g} is a *-homomorphism.
Note also that if E € & and S € T such that E € S, then {E} < S and

MO(E) = 1 gy (Mg} (E)) = ts o vpy,s(M{p(E)) = ts(Ms(E)).  (6.11)
We now have

(i) For each E in &, we have that 7(p, = 00 t{gy, and hence, since 1(py is
a *-homomorphism, Mgy (E) and M°(E) have the same moments with
respect to 7ypy and 70, respectively. Since both operators are bounded,
this implies that L{M°(E)} = L{M g (E)} = Poiss® (v(E)).

(ii) Let FEq,...,E; be disjoint sets from & and consider the tuple S =
(Ei,...,Ey) € Z. Then, since 7¢ = 7 0 15 and g is a *-homomorphism,
we find, using (6.11),

TO (MO(Eil)MO(Eiz) o MO(Eip)) = TS(MS(Eil)MS(Eiz) o MS(Eip))v
for any i1,...,4, in {1,2,...,k}. Since Mg(E1),..., Mg(E})) are freely
independent, this implies that so are M°(Ey),..., M°(Ey).

(iii) Let Ey,...,Ex be disjoint sets from &, put E = UY_, E; and consider
the tuple S = (E1,..., Ey) € Z. Then, by definition of 1;z} g, we have

M®(E) = 1y (Mg (E)) = ts © t{g},5(M{p) (E))
=15(Ms(Ey) + - - -+ Ms(Ey))
= 15(Ms(Er)) + -+ + vs(Ms(Ex))
= M(Ey) +---+ M(Ey).
This concludes the proof. 0O

Lemma 6.15. Let (A°,7°) be as in Lemma 6.13, let #°: A° — B(H) denote
the GNS representation® of A° associated to 70, and let A be the closure of
PO(A%) in B(H®) with respect to the weak operator topology. Let, further, £°
denote the unit vector in H°, which corresponds to the unit 1 40 via the GNS-
construction, and let T denote the vector state on A given by &Y. Then (A,T)
is a W*-probability space, and 7° = 7 0 9°.

Proof. 1t follows immediately from the GNS-construction that
=709 (6.12)

so we only have to prove that 7 is a faithful trace on A. To see that 7 is a trace,
note that since 70 is a trace, it follows from (6.12) that 7 is a trace on the
weakly dense C*-subalgebra ®°(A°) of A. Since the multiplication of operators

9GNS stands for Celfand-Naimark-Segal; see [[XaRi83, Theorem 4.5.2].
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is separately continuous in each variable in the weak operator topology, and
since 7 is a vector state, we may subsequently conclude that 7(ab) = 7(ba)
whenever, say, a € A and b € ®°(A%). Repeating the argument just given,
it follows that 7 is a trace on all of A. This means, furthermore, that £° is
a generating trace vector for A, and hence, by [[{aRi&83, Lemma 7.2.14], it is
also a generating trace vector for the commutant A’ C B(H"). This implies, in
particular, that £° is separating for A (cf. [[KaRi83, Corollary 5.5.12]), which,
in turn, implies that 7 is faithful on A. ]

Proof of Theorem 6.9. Let #° and (A, T) be as in Lemma 6.15. We then
define the mapping M : & — A, by setting

M(E) = " (M°(E)), (E € &).

Now, ¢° is a *-homomorphism and 7° = 70 ®°, so #° preserves all (mixed)
moments of the elements M°(E), E € &. Since M satisfies conditions (i)-(iii)
of Definition 6.7, it follows thus, using the same line of argumentation as in the
proof of Lemma 6.14, that M satisfies conditions (i)-(iii) too. Consequently,
M is a free Poisson random measure on (0, &, v) with values in (A, 7). O

6.4 Integration with Respect to Free Poisson Random Measures

Throughout this section, we consider a free Poisson random measure M on the
o-finite measure space (©,&,r) and with values in the W*-probability space
(A, 7). We consider also a classical Poisson random measure N on (6,&,v)
defined on a classical probability space ({2, F, P). The aim of this section is
to establish a theory of integration with respect to M, making sense, thus, to
the integral f@ fdM for any function f in £!(0,&,v). As in most theories of
integration, we start by defining integration for simple v-integrable functions.

Definition 6.16. Let s be a real-valued simple function in L1(©,E,v), i.e. s
can be written, unambiguously, in the form

T
s = E a;lg,,
Jj=1

where v € N, ay,...,a, are distinct numbers in R\ {0} and E1,...,E, are
disjoint sets from &y (since s is v-integrable). We then define the integral
f@ sdM of s with respect to M as follows:

/ sdM =Y a;M(E;) € A.
&) =

Remark 6.17. (a) Since M(E) € Ay for any E in &, it follows immediately
from Definition 6.16 that f@ sdM is a selfadjoint operator in A for any
real-valued simple function s in £(6, &, ).
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(b) Suppose s and t are real-valued simple functions in £(©,&,v) and that
c € R. Then s+t and ¢ - s are clearly simple functions too, and, using
standard arguments, it is not hard to see that

/(s+t)dM:/de+/th, and /c-dezc sdM.
6 e 6 6 e

(c) Consider now, in addition, the classical Poisson random measure N on
(0,&,v), defined on (2, F,P). Let, further, s be a real-valued simple
function in £'(©, &, v). Then L{ [, sdN} € ID(x), L{ [, s AM } € ID(H),

e A(L{/@st}) :L{/Qde}7

where A is the Bercovici-Pata bijection. Indeed, we may write s in the form
s = Z§=1 ajlg;, where r € N, ay,...,a, are distinct numbers in R\ {0}
and F1, ..., E, are disjoint sets from &. Then, using the properties of A,
we find that

Jj=

L{/@de} - L{iajM(Ej)} - _élDajPoissBﬂ(y(Ej))

= 8 D, A[Poiss" (W(E,))] = A| F Dy, Poiss’ (v(E))]

Jj=

— L] ;W(Ej)}] = afe{ [ san}].

By £1(©,&,v),, we denote the set of positive functions from £*(6, &, v).

Proposition 6.18. Let f be a real-valued function in £L1(0,E,v), and choose
a sequence (s,) of real-valued simple £-measurable functions, satisfying the
conditions:

Jh € El(@,é’,u)+ V0 € © ¥n € N: |s,(0)| < h(0), (6.13)
and
nlggo sn(0) = f(0), (0 €0O). (6.14)

Then s, € LY(O,&,v) for all n, and the integrals f@ sp dM converge in prob-

ability to a selfadjoint (possibly unbounded) operator I(f) affiliated with A.
Furthermore, the limit I(f) is independent of the choice of approximating

sequence (s,) of simple functions (subject to conditions (6.13) and (6.14)).

In condition (6.13), we might have taken h = | f|, but it is convenient to allow
for more general dominators.

Proof of Proposition 6.18. Let f, (s,,) and h be as set out in the proposition.
Then, for any n in N, [ |sn|dv < [5hdv < oo, so that s, € £L1(6,€,v) and
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f@ sp dM is well-defined. Note further that for any n,m in N; s,, — s,,, is again
a simple function in £1(0, &, v), and, using Remark 6.17(c),(d), it follows that

L{/@sndM—/QsmdM}:L{/@(sn—sm)dM}
:A[L{/@(snfsm)dNH,

with N the classical Poisson random measure introduced before. Since h €
LY(O,€,v), it follows from Proposition 2.8 that h € £L1(©,&, N(-,w)) for
almost all w in 2. Hence, by Lebesgue’s theorem on dominated convergence,
we have that

/sn(G)N(dO,w)—>/f(H)N(dH,w), as n — oo,
e 6

(6.15)

for almost all w in £2. In other words, [, s, AN — [, fdN, almost surely, as
n — oo. In particular [, s,dN — [, fdN, in probability as n — oo, so the
sequence (fe S dN)pen is a Cauchy sequence in probability, i.e.

L{/@(sn—sm)dN}Léo, as n,m — oo.

Combining this with (6.15) and the continuity of A (cf. Corollary 5.14), it
follows that ( f o SndM )nen is also a Cauchy sequence in probability, i.e. with
respect to the measure topology. Since A is complete in the measure topology
(cf. Proposition A.5), there exists, thus, an operator I(f) in A, such that
Jo sndM — I(f), in probability as n — oc. Since [, s, dM is selfadjoint for
each n, and since the adjoint operation is continuous in the measure topology,
I(f) is a selfadjoint operator in A.

Suppose, finally, that (¢,) is another sequence of simple real-valued &-
measurable functions satisfying conditions (6.13) and (6.14) (with s,, replaced
by t,). Then, by the argument given above, f@ t, dM — I'(f), in probability
as n — oo, for some selfadjoint operator I’(f) in A. Consider now the mixed
sequence (u,) of simple real-valued £-measurable functions given by:

Uy = 81,U2 = t1,u3 = Sg,Uq = la,...,

and note that this sequence satisfies (6.13) and (6.14) too, so that [ u, dM —
I"(f), in probability as n — oo, for some selfadjoint operator I”(f) in A. Now
the subsequence (us,_1) converges in probability to both I”(f) and I(f) as
n — oo, and the subsequence (usy,) converges in probability to both I”(f)
and I'(f) as n — oo. Since the measure topology is a Hausdorff topology, we
may conclude, thus, that I(f) = I"(f) = I'(f). This completes the proof. O

Definition 6.19. Let f be a real-valued function in LY(O,&,v), and let I(f)
be the selfadjoint operator in A described in Proposition 6.18. We call I(f)
the integral of f with respect to M and denote it by f@ fdM.
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Corollary 6.20. Let M and N be the free and classical Poisson random mea-
sures on (0,E,v) introduced above. Then for any f in LY(O,E,v), we have
L{f@de}eID . L{[y fdM} € ITD(B) and

/de /fdM

Proof. Choose a sequence (s,,) of real-valued simple £-measurable functions
satisfying conditions (6.13) and (6.14) of Proposition 6.18. Then, by Re-
mark 6.17, L{ [ s, AN} € ID(x), L{ [5 sn dM} € ITD(B) and A(L{ [ s,dN})
= L{ [y s, dM} for all n in N. Furthermore

/sndNﬁ/de and /sndML/fdM, as n — 00.
C] C] €} e

In particular (cf. Proposition A.9),

L{/@sndN}LL{/@de} and L{/@sndM}LL{/@fdM},

as n — oo. Since ZD(x) and ZD(H) are both closed with respect to weak
convergence (see Section 4.5), this implies that L{ [, fdN} € ID(x) and
L{[y fdM} € ID(8). Furthermore, by continuity of A, A(L{ [, fdN}) =
L{[y fdM}. O

Proposition 6.21. For any real-valued functions f,g in L*(O,&,v) and any
real number ¢, we have that

/@(f+g)dM:/@fdM+/@ng and /@c~fdM:c/8fdM.

Proof. If f and g are simple functions, this was noted in Remark 6.17. The
general case follows by approximating f and g by simple functions as in Propo-
sition 6.18 and using that addition and scalar-multiplication are continuous
operations in the measure topology (cf. Proposition A.5). O

Proposition 6.22. Let M be a free Poisson random measure on the o-
finite measure space (©,E,v) with values in the W*-probability space (A, T).
Let, further, fi,f2,...,fr be real-valued functions in LY(O,E,v) and let
61,0, ...,0, be disjoint E-measurable subsets of ©. Then the integrals

f1dM, f2 dM,. / frdM,
O1

are freely independent selfadjoint operators affiliated with (A, ).
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Proof. For each j in {1,2,...,7}, let (s;n)nen be a sequence of real valued
simple £-measurable functions, such that

lsin(@) < 1f;0)l, (0 €6, neN),

and

I s5,(0) = £;0), (0 €6).
Then, for each j in {1,2,...,7} and each n in N, we may write s;, - lg, in
the form: N

Sjmn Z (g, ]-A(l j.n)s

where a(1,7,n),...,a(kjn, j,n) € ]R \ {0} and A(1,j,n),...,A(kjn,j,n) are
disjoint sets from &, such that A(l, j,n) C ©; for all I. Now,

kjn

[ sin 1o, aM = Y@ imM(AL G, (=12 r, nEN)
e

=1

so by the properties of free Poisson random measures, the integrals

/317n~1@1d]\4,...,/57.771-1(97"(1]\47
] e

are freely independent for each n in N. Finally, for each j in {1,2,...,r} we
have (cf. Proposition 6.18)

/ fidM = /f] lo; dM = lim Sjn - lo, dM,
e

n—oo

where the limit is taken in probability. Taking now Proposition 4.7 into ac-
count, we obtain the desired conclusion. 0O

6.5 The Free Lévy-Ité6 Decomposition

In this section we derive the free version of the Lévy-It6 decomposition. We
mention in passing the related decomposition of free white noises, which was
established in [G1ScSp92).
Throughout this section we put
H =10, 00[xR C R?,
and we denote by B(H) the set of all Borel subsets of H. Furthermore, for any
€,t in ]0, oo[, such that € < ¢, we put
D(e,00) ={seR|e<|s| <oo} =R\ [—¢¢],
Det)=f{s € R|e<|s| <t} = [-£,6]\ [~e,].

We shall need the following well-known result about classical Poisson ran-
dom measures.
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Lemma 6.23. Let v be a Lévy measure on R and consider the o-finite mea-
sure Leb® v on H. Consider further a (classical) Poisson random measure N
on (H,B(H),Leb ® v), defined on some probability space (£2,F, P).

Then there is a subset £y of (2, such that 29 € F, P(£20) = 1 and such
that the following holds for any w in Qy: For any e,t in ]0,00[, the restric-
tion [N (-,w)]j0,4xD(e,00) Of the measure N(-,w) to the set ]0,t] x D(e,00) is
supported on a finite number of points, each of which has mass 1.

Proof. See [S5299, Lemma 20.1] O

Lemma 6.24. Let v and N be as in Lemma 6.23, and consider a positive
Borel function ¢: R — [0, 00].

(i) For almost all w in §2, the following holds:

Ve>0V0<s<t: / o(x) N(du,dz,w) < co.
]s,t] X D(e,00)

(ii) If f[71 1 p(r)v(dz) < oo, then for almost all w in 2, the following holds:
V0 < s <t: / o(z) N(du,dz,w) < oo.
]s,t] xR

Proof. Since ¢ is positive, it suffices to consider the case s = 0 in (i) and (ii).
Moreover, since ¢ only takes finite values, statement (i) follows immediately
from Lemma 6.23.

To prove (ii), assume that f[—1,1] p(r)v(dz) < oco. By virtue of (i), it
suffices then to prove, for instance, that for almost all w in 2, the following
holds:

Yt > 0: / p(z) N(du,dz,w) < co. (6.16)
10,t]x[—1,1]

Since the integrals in (6.16) increase with ¢, it suffices to prove that for any
fixed ¢ in ]0, oof,

/ o(x) N(du,dz,w) < oo, for almost all w.
10,t]x[—1,1]

This, in turn, follows immediately from the following calculation:

E{ / o(z) N(du, dx)} = / o(z) Leb ® v(du, dx)
10,t]x[—1,1] 10,¢] x[—1,1]

= t/[_m} o) v(der) < oo,

where we have used Proposition 2.8. O
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Lemma 6.25. Let v be a Lévy measure on R, and let M be a Free Pois-
son random measure on (H,B(H),Leb @ v) with values in the W*-probability
space (A, 7). Let, further, N be a (classical) Poisson random measure on
(H,B(H),Leb ® v), defined on a classical probability space (£2,F, P).

(i) For any €, s,t in [0,00[, such that s <t and e > 0, the integrals
/ x M (du, dz), (n €N),
]s,t]x D(e,n)

converge in probability, as n — oo, to some (possibly unbounded) selfad-
joint operator affiliated with A, which we denote byf]S % D(e,00) T Mdu,dx).
Furthermore (cf. Lemma 06.24), L{jis fx D(e,00) TN (du, dz)} € ID(x),

L{f]s’t]xD(E’oo) x M(du,dx)} € ID(B) and
xN(ds,dx)}).

L{ /]S’t]xD(E’OO) xM(du,dx)} - A(L{ /]s,t]xD( (6.17)
6.1

(ii) If f[71 I |z| v(dz) < oo, then for any s,t in [0,00[, such that s < t, the
integrals

€,00)

/ x M (du,dz), (n eN),
]s,t]x [—n,n]

converge in probability, as n — oo, to some (possibly unbounded) selfad-
joint operator affiliated with A, which we denote by f]s x M(du, dz).

Furthermore (cf. Lemma 6.24),

S XR

L{ /}SilXRmN(dmdx)} € ID(x), L{ /]M]XRQUM(du,dx)} € ID(®)

and

L{ /]s,t}meM(du’dx)} = A(L{ /]Swt]XRxN(ds,dx)})

Proof. (i) Note first that for any n in N and any €, s,¢ in [0, 0o, such that
s <t and € > 0, we have that

/ |z| Leb @ v(du, dx) = (t — s)/ || v(dx) < oo,
]s,t]x D(e,n) D(en)

since v is a Lévy measure. Hence, by application of Proposition 6.18, the
integral f] yo M (du,dz) is well-defined and furthermore, by Corol-
lary 6.20,

L /]syt]XD(eﬁn)xM(du,dx)} = (L] /]S’t]XD(Eyn)xN(du,dx)}) (6.18)

s,t]xD(e,n
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Note now that by Lemma 6.24(i) there is a subset {2y of {2, such that 2 € F,
P(.Qo) =1 and

/ |z| N(du,dz,w) < co, for all w in 2.
]s,t]x D(e,00)

Then f]s Hx D(e,00) & N(du,dz,w) is well-defined forall w in 2y andbyLebesgue’s

theorem on dominated convergence,

/ x N(du,dz,w) — x N(du,dz,w),
]s,t]x D(e,n)

00 J1s,t]x D(€,00)

for all w in {2y, i.e. almost surely. In particular

/ x N(du,dz) — x N(du,dz), in probability,
]s,t]x D(e,n)

N0 J1s,t]x D(€,00)

and hence (f]s fx D(en) 2 N(du,dz))nen is a Cauchy sequence in probability.

Now, for any n,m in N, such that n < m, we have, by Proposition 6.21 and
Corollary 6.20,

L{/ xM(du,da:)—/ xM(du,dx)}
1s,t]x D(e,m) ]s,t]x D(e,n)
= L{/ xM(du,da:)}
]s,t]x D(n,m)

A(L{ /] o N(du, dx)})

S

A(L{/} t]XD(gm)xN(du,dx)—/]St]XD(En)xN(du,dx)}).

S

By continuity of A, this shows that (f]s’t]xD(e’n) x M(du, dx)),en is a Cauchy
sequence in probability, and hence, by completeness of A in the measure topol-
ogy,
/ x M(du,dz) := lim x M (du, dx),
]s,t]x D(€,00)

N0 J1s,t]x D(e,n)

exists in A as the limit in probability.
Finally, since ZD(x) and ZD(H) are closed with respect to weak conver-
gence, we have that

L{/ :cN(du,dx)} € ID()
]s,t]x D(€,00)

and
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L{/ xM(du,dx)} e ID(H).
]s,t]x D(e,00)

Moreover, since convergence in probability implies convergence in distribution
(cf. Proposition A.9), it follows from (6.18) and continuity of A that (6.17)
holds.

(ii) Suppose f[—1 1 |z| v(dz) < co. Then for any n in N and any s,t in
[0, oo, such that s < ¢, we have that

/ |z| Leb ® v(du,dx) = (t — s) / || v(da)
]s,t]x[—n,n]

[_nvn]

_ (t—s)(/[_Ll] |x|y(dx)+/D(w )

< 00,

since v is a Lévy measure. Hence, by application of Proposition 6.18, the
integral f] x M(du, dz) is well-defined and, by Corollary 6.20,

s,t]x[—n,n]

L{ Aq,t]x[_nm]xM(du,dx)} :A(L{ /]SW[

From this point on, the proof is exactly the same as that of (i) given above;
the only difference being that the application of Lemma 6.24(i) above must
be replaced by an application of Lemma 6.24(ii). O

xN(du,dac)}).

—n,n]

We are now ready to give a proof of the Lévy-Ito6 decomposition for free
Lévy processes (in law). As is customary in the classical case (cf. [Sa99]), we
divide the general formulation into two parts.

Theorem 6.26 (Free Lévy-Ité Decomposition I). Let (Z;) be a free Lévy
process (in law) affiliated with a W*-probability space (A, T), let v be the Lévy
measure appearing in the free generating triplet for L{Z1} and assume that

f_ll |z| v(dx) < co. Then (Zi) has a representation in the form:
z, Y1 g0 + aWs + / x M(du,dz), (t>0), (6.19)
10,t] xR

where v € R, a > 0, (Wy) is a free Brownian motion in some W*-probability
space (A%, 70) (see Example 5.16) and M is a free Poisson random measure
on (H,B(H),Leb ® v) with values in (A°,7°). Furthermore, the process

U = / x M(du,dx), (t>0),
10,t] xR

is a free Lévy process (in law), which is freely independent of (Wy), and the
right hand side of (6.19), as a whole, is a free Lévy process (in law).
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As the symbol < appearing in (6.19) just means that the two operators
have the same (spectral) distribution, it does not follow directly from (6.19)
that the right hand side is a free Lévy process (in law) (contrary to the
situation in the classical Lévy-Itd decomposition).

Proof of Theorem 6.26. By Proposition 5.15, we may choose a classical
Lévy process (X;), defined on some probability space (£2,F, P), such that
A(L{X:}) = L{Z;} for all ¢ in [0, 00[. Then v is the Lévy measure for L{X;},
so by the classical Lévy-Itd Theorem (cf. Theorem 2.9), (X;) has a represen-
tation in the form:

X¢ = 4t + VaB; + / eN(du,dz),  (t=0),
10,t] xR

where (B;) is a (classical) Brownian motion on (2, F, P), N is a (classical)
Poisson random measure on (H, B(H), Leb®wv), defined on (£2, F, P) and (By)
and N are independent. Put

Y, = / x N(du,dz), (t>0).
10,t] xR

Now choose a free Brownian motion (W;) in some W *-probability space
(AL, 71), and recall that L{W;} = A(L{B;}) for all t. Choose, further, a
free Poisson random measure M on (H,B(H),Leb ® v) with values in some
W *-probability space (A%, 72). Next, let (A%, 7%) be the (reduced) free prod-
uct of the two W*-probability spaces (A',71) and (A%, 72) (cf. [VoDyNi92,
Definition 1.6.1]). We may then consider A' and A% as two freely independent
unital W*-subalgebras of A%, such that TEAl =7!and 7&2 = 72, In particular,
(Wy) and M are freely independent in (A%, 7).

Since f[71,1] |z| v(da) < oo, it follows from Lemma 6.25(ii) that for any ¢
in ]0, co[, the integral U; = f]O,t]xR x M (du, dx) is well-defined, and L{U;} =
A(L{Y:}). Furthermore, it follows immediately from Definition 6.16, Propo-
sition 6.18 and Lemma 6.25 that for any ¢ in [0,¢[, U; = flo’HxRxM(du,dx)
is in the closure of A? with respect to the measure topology. As noted in
Remark 4.8, the set A2 of closed, densely defined operators affiliated with A2
is complete (and hence closed) in the measure topology, and therefore U, is
affiliated with A2 for all t. This implies, in particular, that the two processes
(W) and (U,) are freely independent.

Now, for any ¢ in ]0, co[, we have
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L{ytl g0 + VaW; + Uy} = 6., B D 5 L{W,} B L{U;}
= A(6y) B D zAL{B;}) B A(L{Y;})
= A(64¢ * D g L{By} * L{Y;})
= A(L{yt+VaB, + Y;})
= A(L{X:})
= L{Z},

and this proves (6.19). We prove next that the process (U) is a free Lévy
process (in law). For this, recall that (Y;) is a (classical) Lévy process defined
on (2, F, P) (cf. [5299, Theorem 19.3]), and such that L{U;} = A(L{Y}}) for
all ¢. Since (Y;) has stationary increments, we find for any s, ¢ in [0, oo that

L{Ussy — U} = L{ /] s+t]XRxM(du7dm)} = A(L{ /] S+t]XRxN(du,dx)})

= AL{Ys4t — Ys}) = A(L{Y:}) = L{U},

where we have used Lemma 6.25(ii). Thus, (U;) has stationary increments
too. Furthermore, by continuity of A,

L{UY = A(L{Y;}) =5 A(80) = 6y, ast N\, 0,

so that (U;) is stochastically continuous. Finally, to prove that (U;) has freely
independent increments, consider r in N and ¢g, ¢y, ...,t, in [0, 00, such that
0=ty <ty <---<t,. Thenforany jin {1,2,...,7} we have (cf. Lemma 6.25)
that

Uy, —Ut,_, :/ x M(du,dz) = lim x M (du, dx),
' ' Itj—1,t;]xR

]tj*ht]'] X[=n,n]

where the limit is taken in probability. Since
/ |z| Leb ® v(du, dz) < oo
Itj—1,t;]x[=n,n]

for any n in N and any j in {1,2,...,7}, it follows from Proposition 6.22 that
for any n in N, the integrals

/ x M(du, dz), ji=1,2,...,m,
Itj—1,t5]x[=n,n]

are freely independent operators. Hence, by Proposition 4.7, the increments
Uy, Uy = Uy, U, — Uy,

are also freely independent.
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Tt remains to note that the right hand side of (6.19) is a free Lévy process
(in law). This follows immediately from the fact that the sum of two freely
independent free Lévy processes (in law) is again a free Lévy process (in law).
Indeed, the stochastic continuity condition follows from the fact that addition
is a continuous operation in the measure topology, and the remaining con-
ditions are immediate consequences of basic properties of free independence.
This concludes the proof. 0O

Theorem 6.27 (Free Lévy-Ito Decomposition II). Let (Z;) be a free
Lévy process (in law) affiliated with a W*-probability space (A, 1) and let v be
the Lévy measure appearing in the free characteristic triplet for L{Z,}. Then
(Zt) has a representation in the form:

Zy Lt g0 + VaWe + Vi, (£ >0), (6.20)
where

ne€R, a>0 and (W;) is a free Brownian motion in a W*-probability space
(A%, 7°).
(Vi) is a free Lévy process (in law) given by

V; := lim [/ x M(du,dx)—(/ x Leb®v(du, dgp))le}7
N0 L 10,81 D(e,00) 10,4]X D(e,1)

where M is a free Poisson random measure on (H,B(H),Leb ® v) with
values in (A°,7°), and the limit is taken in probability.
(Wy) and (V4) are freely independent processes.

Furthermore, the right hand side of (6.20), as a whole, is a free Lévy
process (in law).

Proof. The proof proceeds along the same lines as that of Theorem 6.26, and
we shall not repeat all the arguments. Let (X;) be a classical Lévy process
defined on a probability space (£2, F, P) such that L{Z;} = A(L{X,}) for all
t. In particular, the Lévy measure for L{X;} is v. Hence, by Theorem 2.9(ii),
(X¢) has a representation in the form

X, 2 nt 4+ VaB; + Y, (t>0),
where
n€R, a>0and (By) is a (classical) Brownian motion on ({2, F, P).

(Y;) is a classical Lévy process given by

Y; := lim [/ x N(du,dx) 7/ x Leb ® v(du,dx)|,
NO L J10,t]x D(e,00) 10,t]x D(e,1)

where N is a (classical) Poisson random measure on (H,B(H),Leb ® v),
defined on (2, F, P), and the limit is almost surely.
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(B;) and (Y}) are independent processes.

For all €, in ]0, co[, we put:

Yo = / x N(du,dx) — / x Leb ® v(du, dx),
10,8 x D(e,0) 10,6} D(e,1)

so that Y; = lime\ o Y. almost surely, for each ¢.

As in the proof of Theorem 6.26 above, we choose, next, a W*-probability
space (A%, 79), which contains a free Brownian motion (W;) and a free Poisson
random measure M on (H,B(H),Leb ® v/), which generate freely independent
W*-subalgebras. For any € in |0, co[, we put (cf. Lemma 6.25(i)),

Ver = / x M(du,dx) — (/ 2 Leb @ v(du, dx))le.
10,6] x D(e,00) 10, x D(e,1)

Then for any ¢ in ]0,00[ and any €1, € in |0, 1], such that € > e, we have
that

Vest—=Ver 1 = / x M(du,dx)—(/ mLeb@u(du,dx))le.
]O,t]XD(CQ,Gl) ]O,t]XD(CQ,Cl)

Making the same calculation for Y, ; — Y, ; and taking Corollary 6.20 into
account, it follows that L{V., ; — Vi, 1} = A(L{Ye,+ — Ye, +}). Hence, by con-
tinuity of A and completeness of the measure topology, we may conclude that
the limit V; := lim.\ o Ve, exists in probability, and that L{V;} = A(L{Y};}).
Moreover, as in the proof of Theorem 6.26, it follows that (W;) and (V;) are
freely independent processes.

Now for any ¢ in ]0, oo[, we have:

L{ntl go +/aW, + Vi } = 8,0 B D zL{W,} B L{V;}
= A(8y % D g L{B} * L{Y;}) = A(L{X,}) = L{Z,}.

It remains to prove that (V;) is a free Lévy process (in law). For this, note
first that whenever s,¢ > 0, we have (cf. Lemma 6.25(1)),

Vere = Vs

= hH[l) (Vve,ert - ‘/;,s)

e

= lim [/ x M(du,dx)—(/ xLeb ® u(du,dx))le]
eNo ]s,8+t]x D(e,00) ]s,s+t]xD(e,1)

Making the same calculation for Y — Y;, and taking Lemma 6.25(i) as well
as the continuity of A into account, it follows that

L{Vsit = Vs} = A(L{Ys4e — Ys}) = A(L{Y3}) = L{V4},
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so that (V;) has stationary increments. The stochastic continuity of (V) fol-
lows exactly as in the proof of Theorem 6.26. To see, finally, that (V) has
freely independent increments, assume that 0 = t) < t; <ty < --- < t,, and
consider ¢ in |0, 00[. Then for any j in {1,2,...,r},

Vet; = Ver,—, = lim [/ x M(du,dx)
]tj*htj]XD(Evn)

n—oo

- (/]tj_l,tj}xD(e,l) wLeb® v(du, da:))le} :

Hence, by Proposition 6.22 and Proposition 4.7, the increments V., -
Vet;os = 1,2,...,7 are freely independent, for any fixed positive e. Yet
another application of Proposition 4.7 then yields that the increments

%j _WJ‘71 :il\‘Ir(]j (‘/E,t]‘ _‘/E,tj71)7 (]: 1727"‘7T)7

are freely independent too. a

Remark 6.28. Let (Z;) be a free Lévy process in law, such that L{Z; } has Lévy
measure v. If 1[7171] |z| v(dx) < oo, then Theorems 6.26 and 6.27 provide two
different “Lévy-Itd decompositions” of (Z;). The relationship between the two
representations, however, is simply that

7727—1—/ xv(dz) and VtzUt—t(/ xu(dx))le, (t>0).
[—1,1] [—1,1]

Remark 6.29. The proof of the general free Lévy-Itd decomposition, Theo-
rem 6.27, also provides a proof of the general existence of free Lévy processes
(in law). Indeed, the conclusion of the proof of Theorem 6.27 might also be
formulated in the following way: For any classical Lévy process (X;), there ex-
ists a W*-probability space (AY, 7°) containing a free Brownian motion (W)
and a free Poisson random measure M on (H, B(H), Leb ® v), which are freely
independent, and such that

A(L{X+}) =
L{ntlAO + \/&Wt‘i'
lim {/ x M(du,dx) — (/ xLeb® V(du,dx))le} },
eNO L J10,4]x D(e,00) 10,8} D(e,1)
(6.21)
for suitable constants 7 in R and « in |0, oo[. In addition, the process appearing

in the right hand side of (6.21) is a free Lévy process (in law) affiliated with
(A%, 70).
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Assume now that (14);>¢ is a family of distributions in ZD(H), satisfying
the two conditions

vy = v, Br_y, (0<s<t),

and

v~ 8, ast\,0.
Then put p; = A71(4) for all ¢, and note that the family (u;) satisfies the
corresponding conditions:

it = s ¥ fht—s, (0<s <),

and
Ht = 505 ast \ Oa

by the properties of A~!. Hence, by the well-known existence result for clas-
sical Lévy processes, there exists a classical Lévy process (X;), such that
L{X;} = p; and hence A(L{X;}) = 1, for all t. Therefore, the right hand side
of (6.21) is a free Lévy process (in law), (Z;), such that L{Z,} = v, for all .

The above argument for the existence of free Lévy processes (in law) is,
of course, based on the existence of free Poisson random measures proved in
Theorem 6.9. The existence of free Lévy processes (in law) can also, as noted
in [3198] and [V098], be proved directly by a construction similar to that given
in the proof of Theorem 6.9. The latter approach, however, is somewhat more
complicated than the construction given in the proof of Theorem 6.9, since,
in the general case, one has to deal with unbounded operators throughout the
construction, whereas free Poisson random measures only involve bounded
operators.

A Unbounded Operators Affiliated
with a W*-Probability Space

In this appendix we give a brief account on the theory of closed, densely
defined operators affiliated with a finite von Neumann algebra'’. We start
by introducing von Neumann algebras. For a detailed introduction to von
Neumann algebras, we refer to [[<aRi83], but also the paper [Ne74], referred to
below, has a nice short introduction to that subject. For background material
on unbounded operators, see [Ru91].

Let H be a Hilbert space, and consider the vector space B(H) of bounded
(or continuous) linear mappings (or operators) a: H — H. Recall that compo-
sition of operators constitutes a multiplication on B(H), and that the adjoint
operation a — a* is an involution on B(H) (i.e. (a*)* = a). Altogether B(H)
is a *-algebra'l. For any subset S of B(H), we denote by S’ the commutant

19Ty make the appendix appear in self-contained form, some of the definitions
that already appeared in Section 4.1 will be repeated below.

HThroughout this appendix, the * refers to the adjoint operation and not to
classical convolution.



Classical and Free Infinite Divisibilityand Lévy Processes 151

of S, i.e.
S ={be B(H) | by = yb for all y in S}.

A wvon Neumann algebra acting on H is a subalgebra of B(H), which contains
the multiplicative unit 1 of B(H), and which is closed under the adjoint opera-
tion and closed in the weak operator topology (see [[{aRi83, Definition 5.1.1]).
By von Neumann’s fundamental double commutant theorem, a von Neumann
algebra may also be characterized as a subset A of B(H), which is closed under
the adjoint operation and equals the commutant of its commutant: A" = A.

A trace (or tracial state) on a von Neumann algebra A is a positive linear
functional 7: A — C, satistying that 7(1) = 1 and that 7(ab) = 7(ba) for all
a,bin A. We say that 7 is a normal trace on A, if, in addition, 7 is continuous
on the unit ball of A w.r.t. the weak operator topology. We say that 7 is
faithful, if 7(a*a) > 0 for any non-zero operator a in A.

We shall use the terminology W*-probability space for a pair (A, 1), where
A is a von Neumann algebra acting on a Hilbert space H, and 7: A — C is
a faithful, normal tracial state on A. In the remaining part of this appendix,
(A, 7) denotes a W*-probability space acting on the Hilbert space H.

By a linear operator in H, we shall mean a (not necessarily bounded) linear
operator a: D(a) — H, defined on a subspace D(a) of H. For an operator a
in H, we say that

a is densely defined, if D(a) is dense in H,

a is closed, if the graph G(a) = {(h,ah) | h € D(a)} of a is a closed subspace
of H®H, o

a is preclosed, if the norm closure G(a) is the graph of a (uniquely determined)
operator, denoted [a], in H,

a is affiliated with A, if au = ua for any unitary operator u in the commutant

A

For a densely defined operator a in H, the adjoint operator a* has domain

D(a*) = {n € 1 | sup{|(ag, )] | ¢ € D(a), [l < 1} < oo},
and is given by

(a&,m) = (§,a™n), (£ € D(a), n € D(a”)).

We say that a is selfadjoint if a = a* (in particular this requires that D(a*) =
D(a)).

If a is bounded, a is affiliated with A if and only if a € A. In general, a
selfadjoint operator a in H is affiliated with A, if and only if f(a) € A for any
bounded Borel function f: R — C (here f(a) is defined in terms of spectral
theory). As in the bounded case, if a is a selfadjoint operator affiliated with
A, there exists a unique probability measure p, on R, concentrated on the
spectrum sp(a), and satisfying that
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for any bounded Borel function f: R — C. We call u, the (spectral) distrib-
ution of a, and we shall denote it also by L{a}. Unless a is bounded, sp(a) is
an unbounded subset of R and, in general, p, is not compactly supported.

By A we denote the set of closed, densely defined operators in , which are
affiliated with A. In general, dealing with unbounded operators is somewhat
unpleasant, compared to the bounded case, since one needs constantly to take
the domains into account. However, the following two important propositions
allow us to deal with operators in A in a quite relaxed manner.

Proposition A.1 (cf. [Ne74]). Let (A, 7) be a W*-probability space. If a,b €
A, then a+b and ab are densely defined, preclosed operators affiliated with A,
and their closures [a 4+ b] and [ab] belong to A. Furthermore, a* € A.

By virtue of the proposition above, the adjoint operation may be restricted
to an involution oniA7 and we may define operations, the strong sum and the
strong product, on A, as follows:

(a,b) — [a+0b], and (a,b)+ [ab], (a,b€ A).

Proposition A.2 (cf. [Ne74]). Let(A, 7) be aW*-probability space. Equipped
with the adjoint operation and the strong sum and product, A is a *-algebra.

The effect of the above proposition is, that w.r.t. the adjoint operation and
the strong sum and product, we can manipulate with operators in A, without
worrying about domains etc. So, for example, we have rules like

[la +0b]c] = [lac] + [b]],  [a+b]" =[a” +b7],  [ab]" = [b"a”],

for operators a,b,c in A. Note, in particular, that the strong sum of two
selfadjoint operators in A is again a selfadjoint operator. In the following, we
shall omit the brackets in the notation for the strong sum and product, and it
will be understood that all sums and products are formed in the strong sense.

Remark A.3.If ay,as ..., a, are selfadjoint operators in A, we say that they
are freely independent if, for any bounded Borel functions f1, fo,..., fr: R —
R, the bounded operators fi(a1), f2(as),..., fr(a,) in A are freely indepen-
dent in the sense of Section 4. Given any two probability measures p; and po
on R, it follows from a free product construction (see [VoDyNi92]), that one
can always find a WW*-probability space (A, 7) and selfadjoint operators a and
b affiliated with A, such that p; = L{a} and us = L{b}. As noted above, for
such operators a + b is again a selfadjoint operator in A, and, as was proved
in [BeVo93, Theorem 4.6], the (spectral) distribution L{a + b} depends only
on pp and po. We may thus define the free additive convolution pq B po of g
and ps to be L{a + b}.
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Next, we shall equip A with a topology; the so called measure topology,
which was introduced by Segal in [Se53] and later studied by Nelson in [Ne74].
For any positive numbers ¢, §, we denote by N(e,d) the set of operators a in

A, for which there exists an orthogonal projection p in A, satisfying that
p(H) € D(a), |lap|<e and 7(p)=1-3a. (A1)

Definition A.4. Let (A, T) be a W* -probability space. The measure topology
on A is the vector space topology on A for which the sets N(e,0), €,6 > 0,
form a neighbourhood basis for 0.

Tt is clear from the definition of the sets N (e, §) that the measure topology
satisfies the first axiom of countability. In particular, all convergence state-
ments can be expressed in terms of sequences rather than nets.

Proposition A.5 (cf. [Ne74]). Let (A,7) be a W*-probability space and
consider the x-algebra A. We then have

(i) Scalar-multiplication, the adjoint operation and strong sum and product
are all continuous operations w.r.t. the measure topology. Thus, A is a
topological *-algebra w.r.t. the measure topology.

(ii) The measure topology on A is a complete Hausdorff topology.

We shall note, next, that the measure topology on A is, in fact, the topol-
ogy for convergence in probability. Recall first, that for a closed, densely de-
fined operator a in H, we put |a| = (a*a)'/?. In particular, if a € A, then
la| is a selfadjoint operator in A (see [KalRi83, Theorem 6.1.11]), and we may
consider the probability measure L{|a|} on R.

Definition A.6. Let (A, T) be a W*-probability space and let a and a,,, n € N,
be operators in A. We say then that a,, — a in probability, as n — oo, if
|an, — a| — 0 in distribution, i.e. if L{|a, — a|} — 69 weakly.

If a and a,, n € N, are selfadjoint operators in A, then, as noted above,
an — a is selfadjoint for each n, and L{|a, — a|} is the transformation of
L{a,, — a} by the mapping t — |t|, t € R. In this case, it follows thus that
a, — a in probability, if and only if a,, —a — 0 in distribution, i.e. if and only
if L{a,, —a} — 0o weakly.

From the definition of L{|a, — a|}, it follows immediately that we have
the following characterization of convergence in probability:

Lemma A.7. Let (A,7) be a W*-probability space and let a and an, n € N,
be operators in A. Then a,, — a in probability, if and only if

Ve > 0: 7[1je cof(lan —al)] =0, asn — occ.
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Proposition A.8 (cf. [Te81]). Let (A,7) be a W*-probability space. Then
for any positive numbers €,6, we have

N(e,6) = {a € A| 7[1xq(la))] <5}, (A2)

where N (¢,9) is defined via (A.1). In particular, a sequence a,, in A converges,
in the measure topology, to an operator a in A, if and only if a, — a in
probability.

Proof. The last statement of the proposition follows immediately from formula
(A.2) and Lemma A.7. To prove (A.2), note first that by considering the polar
decomposition of an operator a in A (cf. [KaRi83, Theorem 6.1.11]), it follows
that N(e,6) = {a € A | |a| € N(¢,8)}. From this, the inclusion D in (A.2)
follows easily. Regarding the reverse inclusion, suppose a € N (e, ¢), and let p
be a projection in A, such that (A.1) is satisfied with a replaced by |a|. Then,
using spectral theory, it can be shown that the ranges of the projections p and
Lje,00((|al) only have 0 in common. This implies that 7[1}. ((|a])] < 7(1—-p) <
0. We refer to [Te81] for further details. O

Finally, we shall need the fact that convergence in probability implies
convergence in distribution, also in the non-commutative setting. The key
point in the proof given below is that weak convergence can be expressed in
terms of the Cauchy transform (cf. [Ma92, Theorem 2.5]).

Proposition A.9. Let (a,) be a sequence of selfadjoint operators affiliated
with a W*-probability space (A, T), and assume that a,, converges in probabil-
ity, as n — oo, to a selfadjoint operator a affiliated with (A, 7). Then a, — a
in distribution too, i.e. L{a,} ~ L{a}, as n — co.

Proof. Let z,y be real numbers such that y > 0, and put z = z + iy. Then
define the function f,: R — C by

1 1

fZ(t):t—Z:(t—l')—iy’ (tER),

and note that f, is continuous and bounded with sup,cp | f»(t)| = y~*. Thus,
we may consider the bounded operators f.(a,), f.(a) € A. Note then that
(using strong products and sums),

fo(an) = fo(a) = (@, — 21)7' = (a — 21)7?
= (an —21) " ((a = 21) = (an — 21))(a — 21) " (A.3)
= (an, — zl)_l(a —ap)(a— zl)_l.
Now, given any positive numbers ¢, §, we may choose N in N, such that a, —
a € N(e,6), whenever n > N. Moreover, since ||f,(a,)|,||f:(a)|| < y~!, we

have that f.(a,), f.(a) € N(y~1,0). Using then the rule: N(e1,81)N (e2,d2) C
N(ej€e2,01 + 62), which holds for all €1,€e5 in |0, 00[ and 47, d2 in [0, 00] (see
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[Ne74, Formula 177), it follows from (A.3) that f,(a,) — f.(a) € N(ey~2,6),
whenever n > N. We may thus conclude that f,(a,) — f.(a) in the measure
topology, i.e. that L{|f.(a,) — f.(a)|} ~ Jo, as n — oo. Using now the
Cauchy-Schwarz inequality for 7, it follows that

[7(f+(@n) = @) < 7(1fo(an) = (@) - 70)
= [7# L8Ge) - F@)an — o,

0

as n — oo, since supp(L{|f.(a,) — f.(a)[}) € [0,2y~}] for all n, and since
t — t? is a continuous bounded function on [0, 2y~!].

Finally, let G,, and G denote the Cauchy transforms for L{a,} and L{a}
respectively. From what we have established above, it follows then that

Gn('z) = _T(fz(an)) — _T(fz(a)) = G(Z), as n — oo,

for any complex number z = x + iy for which y > 0. By [Ma92, Theorem 2.5],
this means that L{a,} — L{a}, as desired. O
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