Skip to main content

PSP: An advanced surface-potential-based MOSFET model

  • Chapter
TRANSISTOR LEVEL MODELING FOR ANALOG/RF IC DESIGN

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BSIM3 and BSIM4: www-device. eecs. berkeley. edu

    Google Scholar 

  2. Velghe, R. M. D. A., Klaassen, D. B. M., Klaassen, F. M., “MOS Model 9”, NL-UR 003/94, Philips Electron. N. V., 1994. internet: www.semiconductors.philips.com/Philips_Models.

  3. Watts, J., et al., “Advanced compact models for MOSFETs”, In Proc. NSTI-Nanotech, 2005, 3-12.

    Google Scholar 

  4. Gildenblat, G., Wang, H., Chen, T. L., Gu, X., Cai, X., “SP: An advanced surface-potential-based compact MOSFET model”, IEEE J. Solid-State Circ., 2004, 39, 1394-1406.

    Article  Google Scholar 

  5. Chen, T. L., Gildenblat, G., “Analytical approximation for the MOSFET surface potential”, Solid-State Electron., 2001, 45, 335-339.

    Article  Google Scholar 

  6. Chen, T. L., Gildenblat, G., “Symmetric bulk charge linearisation in charge-sheet MOSFET model”, Electron. Lett., 2001, 37, 791-793.

    Article  Google Scholar 

  7. Gildenblat, G., Chen, T. L., “Overview of an advanced surface-potential-based model (SP)”, In Proc. NSTI-Nanotech, 2002, 657-661.

    Google Scholar 

  8. Wang, H., Chen, T. L., Gildenblat, G., “Quasi-static and nonquasi-static compact MOSFET models based on symmetric linearization of the bulk and inversion charges”, IEEE Trans. Electron Dev., 2003, 50, 2262-2272.

    Article  Google Scholar 

  9. Gu, X., Wang, H., Chen, T. L., Gildenblat, G., “Substrate current in surface-potential-based models”, In Proc. NSTI-Nanotech, 2003, 310-312.

    Google Scholar 

  10. Gildenblat, G., Chen, T. L., Gu, X., Wang, H., Cai, X., “SP: An advanced surface-potential-based compact MOSFET model”, In Proc. CICC, 2003, 233-240.

    Google Scholar 

  11. Gildenblat, G., Cai, X., Chen, T. L., Gu, X., Wang, H., “Reemergence of the surface-potential-based compact MOSFET models”, In IEDM Tech. Digest, 2003, 863-866

    Google Scholar 

  12. Gu, X., Chen, T. L., Gildenblat, G., Workman, G. O., Veeraraghavan, S., Shapira, S., Stiles, K., “A surface potential-based compact model of n-MOSFET gate-tunneling current”, IEEE Trans. Electron Dev., 2004, 51, 127-135.

    Article  Google Scholar 

  13. Gildenblat, G., McAndrew, C. C., Wang, H., Wu, W., Foty, D., Lemaitre, L., Bendix, P., “Advanced compact models: Gateway to modern CMOS design”, In Proc. ICECS, 2004, 638-641.

    Google Scholar 

  14. Wu, W., Chen, T. L., Gildenblat, G., McAndrew, C. C., “Physics-based mathematical conditioning of the MOSFET surface potential equation”, IEEE Transactions on Electron Dev., July 2004, 51, 1196-1200.

    Article  Google Scholar 

  15. Wang, H., Gildenblat, G., “A robust large signal non-quasi-static MOSFET model for circuit simulation”, In Proc. IEEE CICC, 2004, 5-8.

    Google Scholar 

  16. Chen, T. L., Gildenblat, G., “An extended analytical approximation for the MOSFET surface potential”, Solid-State Electron., 2005, 49, 267-270.

    Article  Google Scholar 

  17. Wu, W., et al., “SP-SOI: A third generation surface potential based compact SOI MOSFET model”, In Proc. IEEE CICC, 2005, 819-822.

    Google Scholar 

  18. van Langevelde, R., Klaassen, F. M., “An explicit surface-potential-based MOSFET model for circuit simulation”, Solid-State Electron., 2000, 44, 409-418.

    Article  Google Scholar 

  19. van Langevelde, R., Tiemeijer, L. F., Havens, R. J., Knitel, M. J., Roes, R. F. M., Woerlee, P. H., Klaassen, D. B. M., “RF-distortion in deep-submicron CMOS technologies”, In IEDM Tech. Digest, 2000, 807-810.

    Google Scholar 

  20. van Langevelde, R., Scholten, A. J., Havens, R. J., Tiemeijer, L. F., Klaassen, D. B. M., “Advanced compact MOS modeling”, In Proc. ESSDERC, 2001, 81-88.

    Google Scholar 

  21. van Langevelde, R., Scholten, A. J., Duffy, R., Cubaynes, F. N., Knitel, M. J., Klaassen, D. B. M., “Gate current: Modeling, L extraction and impact on RF performance”, In IEDM Tech. Digest, 2001, 289-292.

    Google Scholar 

  22. van Langevelde, R., Scholten, A. J., Klaassen, D. B. M., “MOS Model 11, level 1101”, NL-UR 2002/802, Philips Electron. N. V., 2002. www.semiconductors. philips.com/Philips Models/mos models/model11/

  23. van Langevelde, R., Scholten, A. J., Klaassen, D. B. M., “Physical background of MOS Model 11, level 1101”, NL-UR 2003/00238, Philips Electron. N. V., 2003. www.semiconductors.philips.com/Philips Models/mos_models/model11/

  24. van Langevelde, R., Paasschens, J. C. J., Scholten, A. J., Havens, R. J., Tiemeijer, L. F., Klaassen, D. B. M., “New compact model for induced gate current noise”, In IEDM Tech. Digest, 2003, 867-870.

    Google Scholar 

  25. van Langevelde, R., Scholten, A. J., Klaassen, D. B. M., “Recent enhancements of MOS model 11”, In Proc. NSTI-Nanotech, 2004, 60-65.

    Google Scholar 

  26. Klaassen, D. B. M., van Langevelde, R., Scholten, A. J., “Compact CMOS modeling for advanced analog and RF applications”, IEICE Trans. Electron., 2004, E87-C, 854-866.

    Google Scholar 

  27. Pao, H. C., Sah, C. T., “Effects of diffusion current on characteristics of metal-oxide (Insulator)-semiconductor transistors”, Solid-State Electron., 1966, 9, 927-937.

    Article  Google Scholar 

  28. Brews, J. R., “A charge-sheet model of the MOSFET”, Solid-State Electron., 1978, 21, 345-355.

    Article  Google Scholar 

  29. Tsividis, Y. P., Operation and modeling of the MOS transistor, New York: McGraw-Hill, 1999.

    Google Scholar 

  30. Scholten, A. J., Smit, G. D. J., Durand, M., van Langevelde, R., Dachs, C. J. J., Klaassen, D. B. M., “A new compact model for junctions in advanced CMOS technologies”, In IEDM Tech. Digest, 2005, 209-212.

    Google Scholar 

  31. Wang, H. et al., “Unified non-quasi-static MOSFET model for large-signal and small-signal simulations”, In Proc. IEEE CICC, 2005, 823-826.

    Google Scholar 

  32. PSP: pspmodel. ee. psu. edu

    Google Scholar 

  33. Arora, N. D. MOSFET models for VLSI circuit simulation, Wien: Springer-Verlag, 1993.

    Google Scholar 

  34. McAndrew, C. C., Victory, J. J., “Accuracy of approximations in MOSFET charge models”, IEEE Trans. Electron Dev., 2002, 49, 72-81.

    Article  Google Scholar 

  35. Sah, C. T., “A history of MOS transistor compact modeling”, In Proc. NSTI-Nanotech, 2005, 437-390.

    Google Scholar 

  36. Boothroyd, A. R., Tarasewicz, S. W., Slaby, C., “MISNAN -A physically based continuous MOSFET model for CAD applications”, IEEE Trans. Comput. Aided Design, 1991, 10, 1512-1529.

    Article  Google Scholar 

  37. Rios, R., Murdanai, S., Shih W. K., Packan, P., “An efficient surface potential solution algorithm for compact MOSFET models”, In IEDM Tech. Digest, 2004, 755-758.

    Google Scholar 

  38. Miura-Mattausch, M. et al., “HiSIM: A MOSFET model for circuit simulation con-necting circuit performance with technology, ” In IEDM Tech. Digest, 2002, 109-112.

    Google Scholar 

  39. Turchetti, C., Masetti, G., “A CAD-oriented analytical MOSFET model for high-accuracy applications”, IEEE Trans. Comput. Aided Design, 1984, 3, 117-122.

    Article  Google Scholar 

  40. Bagheri, M., Tsividis, Y., “A small-signal DC-to-high-frequency non-quasistatic model for four-terminal MOSFETs valid in all regions of operation”, IEEE Trans. on Electron Dev., 1985, 32, 2383-91.

    Article  Google Scholar 

  41. Howes, R. et al., “A charge-conserving silicon-on-sapphire SPICE MOSFET model for analog design”, IEEE Int. Symp. Circ. Systems, 1991, 4, 2160-2163.

    Article  Google Scholar 

  42. Nguyen, T. N., Plummer, J. D., “Physical mechanisms responsible for short channel effects in MOS devices”, In IEDM Tech. Digest, 1981, 596-599.

    Google Scholar 

  43. Skotnicki, T., Merckel, G., Pedron, T., “The voltage-doping transformation: A new approach to modeling of MOSFET short-channel effects”, IEEE Electron Dev. Lett., 1988, 9, 109-112.

    Article  Google Scholar 

  44. Miura-Mattausch, M., “Analytical MOSFET model for quarter micron technologies”, IEEE Trans. Comput. Aided Design, 1994, 13, 610-615.

    Article  Google Scholar 

  45. Joardar, K., Gullapulli, K. K., McAndrew, C. C., Burnham M. E., Wild, A., “An improved MOSFET model for circuit simulation”, IEEE Trans. Electron Dev., 1998, 45, 134-148.

    Article  Google Scholar 

  46. Van de Wiele, F., “A long-channel MOSFET model”, Solid-State Electron., 1979, 22, 991-987.

    Article  Google Scholar 

  47. Huang, C. L., Arora, N., “Characterization and modeling of the n-and p-Channel MOSFETs inversion-layer mobility in the range 25-125 °C, Solid-State Electron., 1994, 37, 97-103.

    Article  Google Scholar 

  48. Bendix, P., Rakers, P., Wagh, P., Lemaitre, L., Grabinski, W., McAndrew, C. C., Gu, X., Gildenblat, G., “RF distortion analysis with compact MOSFET models”, In Proc. IEEE CICC, 2004, 9-12.

    Google Scholar 

  49. Scharfetter; D. L., Gummel, H. K., “Large-signal analysis of a silicon read diode oscillator”, IEEE Trans. Electron Dev., 1969, 16, 64-77.

    Article  Google Scholar 

  50. El-Mansy, Y. A., Boothroyd, A. R., “A simple two-dimensional model for IGFET operation in the saturation region”, IEEE Trans. Electron Dev., 1977, 24, 254-262.

    Article  Google Scholar 

  51. Cao, K. M. et al., “Modeling of pocket implanted MOSFETs for anomalous analog behavior”, In IEDM Tech. Digest, 1999, 171-174.

    Google Scholar 

  52. Ward, D. E., Dutton, R. W., “A charge-oriented model for MOS transistor capacitances”, IEEE J. Solid-State Circ., 1978, 13, 703-708.

    Article  Google Scholar 

  53. Foty, D. MOSFET Modeling with SPICE: Principles and Practice, Upper Saddle River, NJ: Prentice-hall, 1997.

    Google Scholar 

  54. Liu, W. MOSFET Models for SPICE Simulations Including BSIM3v3, BSIM4, New York: Wiley, 2001.

    Google Scholar 

  55. Victory, J., Yan, Z., Gildenblat, G., McAndrew, C., Zheng, J., “A physically based scalable varactor model and extractor methodology for RF applications”, IEEE Trans. Electron Dev., 2005, 52, 1343-1353.

    Article  Google Scholar 

  56. Chen, J., Chan, T. Y., Ko, P. K., Hu, C., “Subbreakdown drain leakage current in MOSFET”, IEEE Electron Dev. Lett., 1987, 8, 515-517.

    Article  Google Scholar 

  57. Kane, E. O., “Zener tunneling in semiconductors”, J. Phys. Chem. Solids, 1959, 12, 181-188.

    Article  Google Scholar 

  58. JUNCAP level 1: www.semiconductors.philips.com/Philips_Models

  59. Hurkx, G. A. M., de Graaff, H. C., Kloosterman, W. J., Knuvers, M. P. G., “A new analytical diode model including tunneling and avalanche breakdown”, IEEE Trans. Electron Dev., 1992, 39, 2090-2098.

    Article  Google Scholar 

  60. Wright, P. J., Saraswat, K. C., “Thickness limitations of SiO2 gate dielectrics for MOS ULSI”, IEEE Trans. Electron Dev., 1990, 37, 1884-1892.

    Article  Google Scholar 

  61. Choi, C. H., Nam, K. Y.;Yu, Z., Dutton, R. W., “Impact of gate direct tunneling current on circuit performance: A simulation study”, IEEE Trans. Electron Dev., 2001, 48, 2823-2829.

    Article  Google Scholar 

  62. Tsu, R., Esaki, L., “Tunneling in a finite superlattice”, Appl. Phys. Lett., 1973, 22, 562-564.

    Article  Google Scholar 

  63. Scholten, A. J., Tiemeijer, L. F., van Langevelde, R., Havens, R. J., Zegers-van Duijnhoven, A. T. A., Venezia, V. C., “Noise modeling for RF CMOS circuit simulation”, IEEE Trans. Electron Dev., 2003, 50, 618-632.

    Article  Google Scholar 

  64. Hung, K. K., Ko, P. K., Hu, C., Cheng, Y. C., “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors”, IEEE Trans. Electron Dev., 1990, 37, 654-665.

    Article  Google Scholar 

  65. Hung, K. K., Ko, P. K., Hu, C., Cheng, Y. C., “A physics-based MOSFET noise model for circuit simulators”, IEEE Trans. Electron Dev., 1990, 37, 1323-1333.

    Article  Google Scholar 

  66. van der Ziel, A. Noise Solid-State Dev. Circuits, NewYork: Wiley-Interscience, 1986.

    Google Scholar 

  67. Klaassen, F. M., Prins, J., “Thermal noise of MOS transistors”, Philips Res. Reports, 1967, 22, 505-514.

    Google Scholar 

  68. Klaassen, F. M., “Comments on hot carrier noise in field-effect transistors”, IEEE Trans. Electron Dev., 1971, 18, 74-75.

    Article  Google Scholar 

  69. Paasschens, J. C. J., Scholten, A. J., van Langevelde, R., “Generalisations of the Klaassen-Prins equation for calculating the noise of semiconductor Devices”, IEEE Trans. Electron Dev., 2005, 52, 2463-2472.

    Article  Google Scholar 

  70. Scholten, A. J., Tiemeijer, L. F., de Vreede, P. W. H., Klaassen, D. B. M., “A large signal non-quasi-static MOS model for RF circuit simulation”, In IEDM Tech. Digest, 1999, 163-166.

    Google Scholar 

  71. Mancini, P., Turchetti, C., Masetti, G., “A non-quasi-static analysis of the transient behavior of the long-channel MOSFET valid in all regions of operation”, IEEE Trans. Electron Dev., 1987, ED-34, 325-334.

    Article  Google Scholar 

  72. Hwang, S. W., Yoon, T. W., Kwon, D. H., Kim, K. H., “A physics-based SPICE-compatible non-quasi-static MOS transient model for RF circuit simulation”, Jpn. J. Appl. Phys., 1998, 37, L119-L121.

    Article  Google Scholar 

  73. CMC-website: www.eigroup.org/cmc

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Langevelde, R., Gildenblat, G. (2006). PSP: An advanced surface-potential-based MOSFET model. In: GRABINSKI, W., NAUWELAERS, B., SCHREURS, D. (eds) TRANSISTOR LEVEL MODELING FOR ANALOG/RF IC DESIGN. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4556-5_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4556-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4555-4

  • Online ISBN: 978-1-4020-4556-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics