Skip to main content

Lettuce Diseases and their Management

  • Chapter
Diseases of Fruits and Vegetables: Volume II

Abstract

Lettuce is the world’s most popular leafy salad vegetable. Various types of lettuce are cultivated across the globe, primarily for human consumption of their fresh, succulent leaves. Over 75 lettuce disorders of diverse causes and etiologies have been described. While some diseases are limited in their importance and distribution, a significant number are present wherever Lactuca sativa L. is grown. Many are capable of causing devastating losses in yield and quality under favorable conditions. In this chapter, we have divided lettuce diseases broadly into infectious and non-infectious disorders. Of the important infectious diseases covered, fungi and viruses account for the bulk. Nine fungal diseases are discussed, including anthracnose, bottom rot, Cercospora leaf spot, damping-off, downy mildew, drop, gray mold, Septoria leaf spot, and southern blight. Five viral diseases are covered, and these are: beet western yellows, lettuce big-vein, lettuce infectious yellows, lettuce mosaic, and tomato spotted wilt. The sole phytoplasmic lettuce disease, aster yellows, is also discussed. Of five important bacterial diseases detailed, four are foliar disorders: bacterial leaf spot, marginal leaf blight, soft rot, and varnish spot. Corky root is the one bacterial root disease included. In contrast, all nematode pathogens discussed, lesion, needle, and root-knot nematodes, infect lettuce roots. Three important non-infectious disorders are included in this chapter, namely brown stain, pink rib, and tipburn. These are mainly disorders of mature or postharvest lettuce.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abawi, G. S. and Grogan, R. G. 1979. Epidemiology of disease caused by Sclerotinia species. Phytopathology, 69:899–904.

    Google Scholar 

  • Alvarez, J., Datnoff, L. E. and Nagata, R. T. 1992. Crop rotation minimizes losses from corky root in Florida lettuce. Hort Science, 27:66–68.

    Google Scholar 

  • Barak, J. D., Koike, S. T. and Gilbertson, R. L. 2001. The role of crop debris and weeds in the epidemiology of bacterial leaf spot of lettuce in California. Plant Disease, 85:169–178.

    Google Scholar 

  • Barak, J. D., Koike, S. T. and Gilbertson, R. L. 2002. Movement of Xanthomonas campestris pv. vitians in the stems of lettuce and seed contamination. Plant Pathology, 51:506–512.

    Article  Google Scholar 

  • Brown, N. A. 1918. Some bacterial diseases of lettuce. Journal of Agriculture Research, 13:367–388.

    Google Scholar 

  • Bruckhart, W. L. and Lorbeer, J. W. 1975. Recent occurrences of cucumber mosaic, lettuce mosaic, and broad bean wilt viruses in lettuce and celery fields in New York. Plant Disease Reporter, 59:203–206.

    Google Scholar 

  • Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J. and Watson, L. (eds.) 1996. Viruses of Plants. CAB International, Wallingford, UK. 1484 p.

    Google Scholar 

  • Campbell, R. N. and Grogan, R. G. 1963. Big-vein virus of lettuce and its transmission by Olpidium brassicae. Phytopathology, 53:252–259.

    Google Scholar 

  • Ceponis, M. J., Cappellini, R. A. and Lightner, G. W. 1985. Disorders in crisphead lettuce shipments to the New York market, 1972–1984. Plant Disease, 69:1016–1020.

    Google Scholar 

  • Ceponis, M. J., Kaufman, J. and Butterfield, J.E. 1970. Relative importance of gray mold and bacterial soft rot of western lettuce on the New York Market. Plant Disease Reporter, 54:263–265.

    Google Scholar 

  • Coley-Smith, J. R., Verhoeff, F. and Jarvis, W. R. (eds.) 1980. The Biology of Botrytis. Academic Press, New York.

    Google Scholar 

  • Cho, J. J. 1977. Control of bacterial soft rot of crisphead type lettuce in Hawaii. Plant Disease Reporter, 61:783–787.

    CAS  Google Scholar 

  • Cho, J. J. and Talede, K. Y. 1976. Evaluation of lettuce varieties for resistance to bacterial soft rot. Horticulture Digest, 35:4–5.

    Google Scholar 

  • Cho, J. J., Mau, R. F. L., German, T. L., Hartmann, R. W., Yudin, L. S., Gonsalves, D. and Provvedenti, R. 1989. A multidisciplinary approach to management of tomato spotted wilt virus in Hawaii. Plant Disease, 73:375–383.

    Google Scholar 

  • Crute, I. R. and Dixon, R. 1981. Downy mildew diseases caused by the genus Bremia Regel. In: “The Downy Mildews” (ed. Spencer, D. M.) Academic Press, London. pp. 422–460.

    Google Scholar 

  • Datnoff, L. E. and Nagata, R. T. 1992. Relationship between corky root disesase and yield of crisphead lettuce. Journal of the American Society of Horticultural Science, 117:54–58.

    Google Scholar 

  • Davis, R. M. 1997. Aster yellows. In: “Compendium of Lettuce Diseases” (eds. Davis, R. M., Subbarao, K. V., Raid, R. N., and Kurtz, E. A.) APS Press, St. Paul, MN. pp. 51.

    Google Scholar 

  • Davis, R. M., Subbarao, K. V., Raid, R. N. and Kurtz, E. A. (eds.) 1997. Compendium of Lettuce Diseases. APS Press, St. Paul, MN. 79 p.

    Google Scholar 

  • Dinant, S. and Lot, H. 1992. Lettuce mosaic virus: A review. Plant Pathology, 41:528–542.

    Google Scholar 

  • Duffus, J. E., Larsen, R. C. and Liu, H. Y. 1986. Lettuce infectious yellows virus — A new type of whitefly-transmitted virus. Phytopathology, 76:97–100.

    Article  Google Scholar 

  • Fahy, P. C. and Persley, G. J. 1983. Plant Bacterial Diseases: A Diagnostic Guide. Academic Press, New York.

    Google Scholar 

  • Falk, B. W. 1997. Lettuce Big-Vein. In: “Compendium of Lettuce Diseases” (eds. Davis, R. M., Subbarao, K. V., Raid, R. N. and Kurtz, E. A.) APS Press, St. Paul, MN. pp. 41–42.

    Google Scholar 

  • Frazier, N.W. and Severin, H. H. P. 1945. Weed-host range of California aster yellows. Hilgardia, 16:619–650.

    Google Scholar 

  • Galea, V. J., Price, T. V. and Sutton, B. C. 1986. Taxonomy and biology of the lettuce anthracnose fungus. Transactions of the British Mycological Society, 86:619–628.

    Article  Google Scholar 

  • German, T. L., Ullman, D. E. and Moyer, J.W. 1992. Tospoviruses: Diagnosis, molecular biology, phylogeny, and vector relationships. Annual Review of Phytopathology, 30:315–348.

    Article  CAS  PubMed  Google Scholar 

  • Grogan, R. G. 1980. Control of lettuce mosaic with virus-free seed. Plant Disease, 64:446–449.

    Article  Google Scholar 

  • Grogan, R. G., Misaghi, I. J., Kimble, K. A., Greathead, A. S., Ririe, D. and Bardin, R. 1977. Varnish spot, a destructive disease of lettuce in California caused by Pseudomonas cichorii. Phytopathology, 67:957–960.

    Google Scholar 

  • Herr, L. J. 1992. Characteristics of Rhizoctonia isolates associated with bottom rot of lettuce in organic soils in Ohio. Phytopathology, 82:1046–1050.

    Google Scholar 

  • Herr, L. J. 1993. Host sources, virulence and overwinter survival of Rhizoctonia solani anastomosis groups isolated from field lettuce with bottom rot symptoms. Crop Protection, 12:521–526.

    Article  Google Scholar 

  • Hine, R., Matheron, M. and Byrne, D. 1991. Diseases of lettuce in Arizona. Univ. of Arizona College of Agriculture Publication 191050.

    Google Scholar 

  • Hovius, M. H. Y. and McDonald, M. R. 1999. Field evaluation of forecasting systems to optimize fungicide applications for downy mildew of lettuce, 1998. American Phytopathological Society, Fungicide and Nematicide Tests, 54:146–147.

    Google Scholar 

  • Imolehin, E. D. and Grogan, R. G. 1980. Factors affecting survival of sclerotia, and effects of inoculum density, relative position, and distance of sclerotia from the host on infection of lettuce by Sclerotinia minor. Phytopathology, 70:1162–1167.

    Google Scholar 

  • Inglis, D., Derie, M., Gundersen, B. and Vestey, E. 1999. Evaluation of fungicides for lettuce anthracnose control, 1998. American Phytopathological Society, Fungicide and Nematicide Tests, 54:149.

    Google Scholar 

  • Katan, J. and DeVay, J.E. (eds.) 1991. Soil Solarization. CRC Press, Boca Raton. 267 p.

    Google Scholar 

  • Ke, D. and Saltveit, M. E. 1989. Carbon dioxide-induced brown stain development as related to phenolic metabolism in iceberg lettuce. Journal of the American Society of Horticultural Science, 114:789–794.

    CAS  Google Scholar 

  • Kolodge, C., Radewald, J. D. and Shibuya, F. 1987. Revised host range and studies on the life cycle of Longidorus africanus. Journal of Nematology, 19:77–81.

    PubMed  CAS  Google Scholar 

  • Lindqvist, K. 1960. On the origin of cultivated lettuce. Hereditas, 46:319–350.

    Google Scholar 

  • Mahr, S. E. R., Stevenson, W. R. and Sequeira, L. 1986. Control of bottom rot of head lettuce with iprodione. Plant Disease, 70:506–509.

    CAS  Google Scholar 

  • Marlatt, R. B. and Stewart, J. K. 1956. Pink rib of head lettuce. Plant Disease Reporter, 40:742–743.

    Google Scholar 

  • Matheron, M. E. and Porchas, M. 1999a. Comparative efficacy of fungicides for management of downy and powdery mildew on lettuce, 1998. American Phytopathological Society, Fungicide and Nematicide Tests, 54:150–151.

    Google Scholar 

  • Matheron, M. E. and Porchas, M. 1999b. Evaluation of a new fungicides for management of Sclerotinia leaf drop of lettuce, 1998. American Phytopathological Society, Fungicide and Nematicide Tests, 54:152.

    Google Scholar 

  • Matheron, M. E. and Porchas, M. 2000a. Evaluation of new fungicides for management of Sclerotinia leaf drop of lettuce, 1999. American Phytopathological Society, Fungicide and Nematicide Tests, 54:167.

    Google Scholar 

  • Matheron, M. E. and Porchas, M. 2000b. Management of powdery mildew on lettuce with fungicides, 1999. American Phytopathological Society, Fungicide and Nematicide Tests, 54:168.

    Google Scholar 

  • Nagata, R. T. and Ryder, E. J. 1997. atTipburn. In: “Compendium of Lettuce Diseases” (eds. Davis, R. M., Subbarao, K. V., Raid, R. N., and Kurtz, E. A.) APS Press, St. Paul, MN. pp. 67–68.

    Google Scholar 

  • 0’Brien, R. D. and van Bruggen, A. H. C. 1992. Yield losses to iceberg lettuce due to corky root caused by Rhizomonas suberifaciens. Phytopathology, 82:154–159.

    Google Scholar 

  • Olthof, T. H. A. and Potter, J. W. 1973. The relationship between population densities of Pratylenchus penetrans and crop losses in summer-maturing vegetables in Ontario. Phytopathology, 63:577–582.

    Google Scholar 

  • Palti, J. and Katan, J. 1997. Effect of cultivation practices and cropping systems on soilborne disease. In: “Soilborne Diseases of Tropical Plants” (eds. Hillocks, R. J., and Waller, J. M.) CAB International, University Press, Cambridge. pp. 377–396.

    Google Scholar 

  • Patterson, C. L. and Grogan, R. G. 1985a. The source and survival of primary inoculum produced by Microdochium panattoniana, the causal agent of lettuce anthracnose. Phtyopathology, 75:1319.

    Google Scholar 

  • Patterson, C. L. and Grogan, R. G. 1985b. Differences in epidemiology and control of lettuce drop caused by Sclerotinia minor and S. sclerotiorum. Plant Disease, 69:766–770.

    CAS  Google Scholar 

  • Patterson, C. L., Grogan, R. G. and Campbell, R. N. 1986. Economically important diseases of lettuce. Plant Disease, 70:982–987.

    Google Scholar 

  • Pernezny, K., Raid, R. N., Stall, R. E., Hodge, N. C. and Collins, J. 1995. An outbreak of bacterial spot of lettuce in Florida caused by Xanthomonas campestris pv. vitians. Plant Disease, 79:359–360.

    Article  Google Scholar 

  • Pieczarka, D. J. and Lorbeer, J. W. 1975. Micoroorganisms associated with bottom rot of lettuce grown on organic soil in New York State. Phytopathology, 65:16–21.

    Article  Google Scholar 

  • Potter, J. W. and Olthof, T. H. A. 1974. Yield losses in fall-maturing vegetables relative to population densities of Pratylenchus penetrans and Meloidogyne hapla. Phytopathology, 64:1072–1075.

    Article  Google Scholar 

  • Punja, Z. K. 1985. The biology, ecology, and control of Sclerotium rolfsii. Annual Review of Phytopathology, 23:97–127.

    CAS  Google Scholar 

  • Radewald, J. D., Mowbray, P. G., Paulus, A. O., Shibuya, F. and Rible, J. M. 1969. Preplant soil fumigation for California head lettuce. Plant Disease Reporter, 53:385–389.

    Google Scholar 

  • Raid, R. N. and Datnoff, L. E. 1990. Loss of the EBDC fungicides: Impact on control of lettuce downy mildew. Plant Disease, 74:829–831.

    CAS  Google Scholar 

  • Raid, R. N., Datnoff, L. E., Schettini, T. M. and Michelmore, R. W. 1990. Insensitivity of Bremia lactucae to metalaxyl on lettuce in Florida. Plant Disease, 74:81.

    Google Scholar 

  • Raid, R. N. and Nagata, R. T. 2003. Evaluation of fungicides for control of Cercospora leaf spot and downy mildew on lettuce, 2002. APS Fungicide and Nematicide Tests, 58: (in press).

    Google Scholar 

  • Robinson, R. W. and Provvidenti, R. 1993. Breeding lettuce for viral resistance. In: “Resistance to Viral Diseases of Vegetables” (ed. Kyle, M. M.) Timber Press, Inc., Portland, OR. pp. 61–79.

    Google Scholar 

  • Rodriguez-Kabana, R. and Kokalis-Burelle, N. 1997. Chemical and biological control. In: “Soilborne Diseases of Tropical Plants” (eds. Hillocks, R. J., and Waller, J. M.) CAB International, University Press, Cambridge. pp. 397–418.

    Google Scholar 

  • Ryder, E. J. 1979. Leafy Salad Vegetables. AVI, Westport, CT.

    Google Scholar 

  • Savery, S. 1983. Epidemiology of Cercospora leaf spot of lettuce in Republic of the Ivory Coast. Agronomie, 3:903–909.

    Google Scholar 

  • Scherm, H. and van Bruggen, A. H. C. 1994. Effects of fluctuating temperatures on the latent period do lettuce downy mildew (Bremia lactucae). Phytopathology, 84:853–859.

    Google Scholar 

  • Scherm, H. and van Bruggen, A. H. C. 1995. Comparative study of microclimate and downy mildew development in subsurface drip-and furrow-irrigated lettuce fields in California. Plant Disease, 79:620–625.

    Google Scholar 

  • Scherm, H., Koike, S. T., Laemmlen, F. F. and van Bruggen, A. H. C. 1995. Field evaluation of fungicide spray advisories against lettuce downy mildew (Bremia lactucae) based on measured and forecast morning leaf wetness. Plant Disease, 79:511–516.

    Google Scholar 

  • Schettini, T. M., Legg, E. J. and Michelmore, R. W. 1991. Insensitivity to metalaxyl in California populations of Bremia lactucae and resistance of California lettuce cultivars to downy mildew. Phytopathology, 81:64–70.

    CAS  Google Scholar 

  • Schnathorst, W. C. 1959. Spread and life cycle of the lettuce powdery mildew fungus. Phytopathology, 49:464–468.

    Google Scholar 

  • Schnathorst, W. C. 1960. Effects of temperature and moisture stress on the lettuce powdery mildew fungus. Phytopathology, 50:304–308.

    Google Scholar 

  • Severin, H. H. P. and Frazier, N. W. 1945. California aster yellows on vegetable and seed crops. Hilgardia, 16:573–596.

    Google Scholar 

  • Smith, P. R. 1961. Seedborne Septoria in lettuce: Eradication by hot water treatment. Journal of Agriculture, 59:555–556.

    CAS  Google Scholar 

  • Snowdon, A. L. 1992. Color Atlas of Post-harvest Diseases and Disorders of Fruit and Vegetables. Vol. 2, Vegetables. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Sonneveld, C. and Mook, E. 1983. Lettuce tipburn as related to the cation contents of different plant parts. Plant and Soil, 75:29–40.

    Article  CAS  Google Scholar 

  • Stewart, J. K. 1978. Influence of oxygen, carbon dioxide, and carbon monoxide levels on decay of head lettuce after harvest. Scientia Horticulture, 9:207–213.

    Article  CAS  Google Scholar 

  • Subbarao, K. V., Koike, S. T. and Hubbard, J. C. 1996. Effects of deep plowing on the distribution and density of Sclerotina minor sclerotia and lettuce drop incidence. Plant Disease, 80:28–33.

    Google Scholar 

  • Thompson, A. D. and Proctor, C. H. 1966. Cucumber mosaic virus in lettuce. New Zealand Journal of Agriculture Research, 9:142–144.

    Google Scholar 

  • van Bruggen, A. H. C., Brown, P. R., Shennan, C., and Greathead. A. S. 1990. The effect of cover crops and fertilization with ammonium nitrate on corky root of lettuce. Plant Disease, 74:584–589

    Google Scholar 

  • van Bruggen, A. H. C. and Rubatzky, V. E. 1992. Use of transplants instead of direct seeding to reduce corky root severity and losses due to corky root in iceberg lettuce. Plant Disease, 76:703–708.

    Article  Google Scholar 

  • Vetten, H. J., Lesemann, D. E. and Dalchow, J. 1987. Electron microscopical and serological detection of virus-like particles associated with lettuce big-vein disease. Journal of Phytopathology, 120:53–59.

    Google Scholar 

  • Wang, Z.-N., Coley-Smith, J. R. and Wareing, P. W. 1986. Dicarboximide resistance in Botrytis cinerea in protected lettuce. Plant Pathology, 35:427–433.

    CAS  Google Scholar 

  • Wong, T. K. and Mai, W. F. 1973a. Pathogenicity of Meloidogyne hapla to lettuce as affected by inoculum level, plant age at inoculation and temperature.. Journal of Nematology, 5:126–129

    PubMed  CAS  Google Scholar 

  • Wong, T. K. and Mai, W. F. 1973b. Meloidogyne hapla in organic soil: Effects of environment on hatch, movement and root invasion. Journal of Nematology, 5:130–138.

    PubMed  CAS  Google Scholar 

  • Wong, T. K. and Mai, W. F. 1973c. Effect of temperature on growth, development and reproduction of Meloidogyne hapla in lettuce. Journal of Nematology, 5:139–142.

    PubMed  CAS  Google Scholar 

  • Zerbini, F. M., Koike, S. T. and Gilbertson, R. L. 1995. Biological and molecular characterization of lettuce mosaic potyvirus isolates for the Salinas Valley of California. Phytopathology, 85:746–752.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Raid, R.N. (2004). Lettuce Diseases and their Management. In: Naqvi, S.A.M.H. (eds) Diseases of Fruits and Vegetables: Volume II. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2607-2_5

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2607-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1823-7

  • Online ISBN: 978-1-4020-2607-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics