Skip to main content

Cell Cycle Activation and Cell Death in the Nervous System

  • Chapter
Cell-Cycle Mechanisms and Neuronal Cell Death

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

  • 566 Accesses

Abstract

The discovery of the cell division cycle opened new avenues for the understanding of cancer as well as in the search for therapy. However, the implications of the discovery had a more profound effect on biological research than anticipated at the time. We can now clearly distinguish between the activation of the cell division cycle and cell division itself. We also have closer understanding of the differences between senescence, quiescence and terminal differentiation. Furthermore the elucidation of the mechanisms that regulate the cell cycle also means that we have now begun to understand the mechanisms that link cell division and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Malumbres M, Barbacid M. To cycle or not to cycle: A critical decision in cancer. Nature reviews. Cancer 2001; 1(3):222–231.

    PubMed  CAS  Google Scholar 

  2. Uchiyama Y. Apoptosis: The history and trends of its studies. Archives of Histology and Cytology 1995; 58(2):127–137.

    PubMed  CAS  Google Scholar 

  3. Wilson MR. Apoptotic signal transduction: Emerging pathways. Biochemistry and Cell Biology 1998; 76(4):573–582.

    Article  PubMed  CAS  Google Scholar 

  4. Blaschke AJ, Staley K, Chun J. Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 1996; 122(4):1165–1174.

    PubMed  CAS  Google Scholar 

  5. Nguyen MD, Mushynski WE, Julien JP. Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death and Differentiation 2002; 9(12):1294–1306.

    Article  PubMed  CAS  Google Scholar 

  6. Sommer L, Rao M. Neural stem cells and regulation of cell number. Progress in Neurobiology 2002; 66(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  7. Peunova N, Scheinker V, Cline H et al. Nitric oxide is an essential negative regulator of cell proliferation in Xenopus brain. J Neurosci 2001; 21(22):8809–8818.

    PubMed  CAS  Google Scholar 

  8. Groszer M, Erickson R, Scripture-Adams DD et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 2001; 294(5549):2186–2189.

    Article  PubMed  CAS  Google Scholar 

  9. Quinn LM, Herr A, McGarry TJ et al. The Drosophila Geminin homolog: Roles for Geminin in limiting DNA replication, in anaphase and in neurogenesis. Genes Dev 2001; 15(20):2741–2754.

    Article  PubMed  CAS  Google Scholar 

  10. Mitchell BD, Gibbons B, Allen LR et al. Aberrant apoptosis in the neurological mutant flathead is associated with defective cytokinesis of neural progenitor cells. Brain Res Dev Brain Res 2001; 130(1):53–63.

    Article  PubMed  CAS  Google Scholar 

  11. Olson JM, Asakura A, Snider L et al. NeuroD2 is necessary for development and survival of central nervous system neurons. Dev Biol 2001; 234(1):174–187.

    Article  PubMed  CAS  Google Scholar 

  12. Gomes WA, Kessler JA. Msx-2 and p21 mediate the pro-apoptotic but not the anti-proliferative effects of BMP4 on cultured sympathetic neuroblasts. Dev Biol 2001; 237(1):212–221.

    Article  PubMed  CAS  Google Scholar 

  13. Lossi L, Coli A, Giannessi E et al. Cell proliferation and apoptosis during histogenesis of the guinea pig and rabbit cerebellar cortex. Italian journal of anatomy and embryology. Archivio Italiano di Anatomia ed Embriologia 2002; 107(2):117–125.

    PubMed  Google Scholar 

  14. Erhardt JA, Pittman RN. p21WAF1 induces permanent growth arrest and enhances differentiation, but does not alter apoptosis in PC12 cells. Oncogene 1998; 16(4):443–451.

    Article  PubMed  CAS  Google Scholar 

  15. Park DS, Levine B, Ferrari G et al. Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J Neurosci 1997; 17(23):8975–8983.

    PubMed  CAS  Google Scholar 

  16. Mani S, Shen Y, Schaefer J et al. Failure to express GAP-43 during neurogenesis affects cell cycle regulation and differentiation of neural precursors and stimulates apoptosis of neurons. Mol Cell Neurosci 2001; 17(1):54–66.

    Article  PubMed  CAS  Google Scholar 

  17. Gonzalez Garcia M, Garcia I, Ding L et al. Bcl-x is expressed in embryonic and postnatal neural tissues and functions to prevent neuronal cell death. Proceedings of the National Academy of Sciences of the United States of America 1995; 92(10):4304–4308.

    Article  PubMed  CAS  Google Scholar 

  18. Castren E, Ohga Y, Berzaghi MP et al. Bcl-2 messenger RNA is localized in neurons of the developing and adult rat brain. Neuroscience 1994; 61(1):165–177.

    Article  PubMed  CAS  Google Scholar 

  19. Chen DF, Schneider GE, Martinou JC et al. Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature 1997; 385(6615):434–439.

    Article  PubMed  CAS  Google Scholar 

  20. Daadi MM, Saporta S, Willing AE et al. In vitro induction and in vivo expression of bcl-2 in the hNT neurons. Brain Research Bulletin 2001; 56(2):147–152.

    Article  PubMed  CAS  Google Scholar 

  21. Hilton M, Middleton G, Davies AM. Bcl-2 influences axonal growth rate in embryonic sensory neurons. Current Biology CB 1997; 7(10):798–800.

    Article  PubMed  CAS  Google Scholar 

  22. Vairo G, Soos TJ, Upton TM et al. Bcl-2 retards cell cycle entry through p27(Kip1), pRB relative p130, and altered E2F regulation. Molecular and Cellular Biology 2000; 20(13):4745–4753.

    Article  PubMed  CAS  Google Scholar 

  23. Cheng A, Chan SL, Milhavet O et al. p38 MAP kinase mediates nitric oxide-induced apoptosis of neural progenitor cells. J Biol Chem 2001; 276(46):43320–43327.

    Article  PubMed  CAS  Google Scholar 

  24. Lee Y, Chong MJ, McKinnon PJ. Ataxia telangiectasia mutated-dependent apoptosis after genotoxic stress in the developing nervous system is determined by cellular differentiation status. J Neurosci 2001; 21(17):6687–6693.

    PubMed  CAS  Google Scholar 

  25. Eves EM, Boise LH, Thompson CB et al. Apoptosis induced by differentiation or serum deprivation in an immortalized central nervous system neuronal cell line. Journal of Neurochemistry 1996; 67(5):1908–1920.

    Article  PubMed  CAS  Google Scholar 

  26. Noble M, Dietrich J. Intersections between neurobiology and oncology: Tumor origin, treatment and repair of treatment-associated damage. Trends Neurosci 2002; 25(2):103–107.

    Article  PubMed  CAS  Google Scholar 

  27. Roman DD, Sperduto PW. Neuropsychological effects of cranial radiation: Current knowledge and future directions. Int J Radiat Oncol Biol Phys 1995; 31(4):983–998.

    Article  PubMed  CAS  Google Scholar 

  28. Radcliffe J, Bunin GR, Sutton LN et al. Cognitive deficits in long-term survivors of childhood medulloblastoma and other noncortical tumors: Age-dependent effects of whole brain radiation. Int J Dev Neurosci 1994; 12(4):327–334.

    Article  PubMed  CAS  Google Scholar 

  29. Schagen SB, van Dam FS, Muller MJ et al. Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer 1999; 85(3):640–650.

    Article  PubMed  CAS  Google Scholar 

  30. van Dam FS, Schagen SB, Muller MJ et al. Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: High-dose versus standard-dose chemotherapy. J Natl Cancer Inst 1998; 90(3):210–218.

    Article  PubMed  Google Scholar 

  31. Kubota Y, Takahashi S, Sun XZ et al. Radiation-induced tissue abnormalities in fetal brain are related to apoptosis immediately after irradiation. Int J Radiat Biol 2000; 76(5):649–659.

    Article  PubMed  CAS  Google Scholar 

  32. Peissner W, Kocher M, Treuer H et al. Ionizing radiation-induced apoptosis of proliferating stem cells in the dentate gyrus of the adult rat hippocampus. Brain Res Mol Brain Res 1999; 71(1):61–68.

    Article  PubMed  CAS  Google Scholar 

  33. Bellinzona M, Gobbel GT, Shinohara C et al. Apoptosis is induced in the subependyma of young adult rats by ionizing irradiation. Neurosci Lett 1996; 208(3):163–166.

    Article  PubMed  CAS  Google Scholar 

  34. Uberti D, Piccioni L, Cadei M et al. p53 is dispensable for apoptosis but controls neurogenesis of mouse dentate gyrus cells following gamma-irradiation. Brain Res Mol Brain Res 2001; 93(1):81–89.

    Article  PubMed  CAS  Google Scholar 

  35. Gobbel GT, Bellinzona M, Vogt AR et al. Response of postmitotic neurons to X-irradiation: Implications for the role of DNA damage in neuronal apoptosis. J Neurosci 1998; 18(1):147–155.

    PubMed  CAS  Google Scholar 

  36. Tikka T, Usenius T, Tenhunen M et al. Tetracycline derivatives and ceftriaxone, a cephalosporin antibiotic, protect neurons against apoptosis induced by ionizing radiation. J Neurochem 2001; 78(6):1409–1414.

    Article  PubMed  CAS  Google Scholar 

  37. Bendeck MP, Conte M, Zhang M et al. Doxycycline modulates smooth muscle cell growth, migration, and matrix remodeling after arterial injury. Am J Pathol 2002; 160(3):1089–1095.

    PubMed  CAS  Google Scholar 

  38. Park DS, Morris EJ, Padmanabhan J et al. Cyclin-dependent kinases participate in death of neurons evoked by DNA-damaging agents. J Cell Biol 1998; 143(2):457–467.

    Article  PubMed  CAS  Google Scholar 

  39. Fischer SJ, McDonald ES, Gross L et al. Alterations in cell cycle regulation underlie cisplatin induced apoptosis of dorsal root ganglion neurons in vivo. Neurobiol Dis 2001; 8(6):1027–1035.

    Article  PubMed  CAS  Google Scholar 

  40. Lee HW, Koo H, Choi KG et al. The effects of peripheral leukocytes on the hippocampal neuronal changes in transient global ischemia and unilateral cerebral hemispheric infarction. J Korean Med Sci 1999; 14(3):304–314.

    PubMed  CAS  Google Scholar 

  41. Sebille A, Bondoux-Jahan M. Motor function recovery after axotomy: Enhancement by cyclophosphamide and spermine in rat. Exp Neurol 1980; 70(3):507–515.

    Article  PubMed  CAS  Google Scholar 

  42. Husseman JW, Nochlin D, Vincent I. Mitotic activation: A convergent mechanism for a cohort of neurodegenerative diseases. Neurobiology of Aging 2000; 21(6):815–828.

    Article  PubMed  CAS  Google Scholar 

  43. Arendt T, Rodel L, Gartner U et al. Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer’s disease. Neuroreport 1996; 7(18):3047–3049.

    PubMed  CAS  Google Scholar 

  44. Nagy Zs, Esiri MM, Cato AM et al. Cell cycle markers in the hippocampus in Alzheimer’s disease. Acta Neuropathol (Berl) 1997; 94(1):6–15.

    Article  PubMed  CAS  Google Scholar 

  45. Nagy Zs, Esiri MM, Smith AD. Expression of cell division markers in the hippocampus in Alzheimer’s disease and other neurodegenerative conditions. Acta Neuropathol (Berl) 1997; 93(3):294–300.

    Article  PubMed  CAS  Google Scholar 

  46. Vincent I, Rosado M, Davies P. Mitotic mechanisms in Alzheimer’s disease? J Cell Biol 1996; 132(3):413–425.

    Article  PubMed  CAS  Google Scholar 

  47. Smith TW, Lippa CF. Ki-67 immunoreactivity in Alzheimer’s disease and other neurodegenerative disorders. J Neuropathol Exp Neurol 1995; 54(3):297–303.

    PubMed  CAS  Google Scholar 

  48. Nagy Zs, Esiri MM. Neuronal cyclin expression in the hippocampus in temporal lobe epilepsy. Exp Neurol 1998; 150(2):240–247.

    Article  PubMed  CAS  Google Scholar 

  49. Vincent I, Jicha G, Rosado M et al. Aberrant expression of mitotic cdc2/cyclin B1 kinase in de generating neurons of Alzheimer’s disease brain. J Neurosci 1997; 17(10):3588–3598.

    PubMed  CAS  Google Scholar 

  50. Nagy Zs, Esiri MM. Apoptosis-related protein expression in the hippocampus in Alzheimer’s disease. Neurobiol Aging 1997; 18(6):565–571.

    Article  PubMed  CAS  Google Scholar 

  51. Busser J, Geldmacher DS, Herrup K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. Journal of Neuroscience the Official Journal of the Society for Neuroscience 1998; 18(8):2801–2807.

    CAS  Google Scholar 

  52. Nagy Zs, Esiri MM, Smith AD. The cell division cycle and the pathophysiology of Alzheimer’s disease. Neuroscience 1998; 87(4):731–739.

    Article  PubMed  CAS  Google Scholar 

  53. Hamdane M, Smet C, Sambo AV et al. Pin1: A therapeutic target in Alzheimer neurodegeneration. Journal of Molecular Neuroscience MN 2002; 19(3):275–287.

    Article  PubMed  CAS  Google Scholar 

  54. Hoozemans JJ, Bruckner MK, Rozemuller AJ et al. Cyclin D1 and cyclin E are colocalized with cyclo-oxygenase 2 (COX-2) in pyramidal neurons in Alzheimer disease temporal cortex. Journal of Neuropathology and Experimental Neurology 2002; 61(8):678–688.

    PubMed  CAS  Google Scholar 

  55. Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer’s disease. Journal of Neuroscience the Official Journal of the Society for Neuroscience 2001; 21(8):2661–2668.

    CAS  Google Scholar 

  56. Ding XL, Husseman J, Tomashevski A et al. The cell cycle Cdc25A tyrosine phosphatase is activated in degenerating postmitotic neurons in Alzheimer’s disease. American Journal of Pathology 2000; 157(6):1983–1990.

    PubMed  CAS  Google Scholar 

  57. Zhu X, Rottkamp CA, Raina AK et al. Neuronal CDK7 in hippocampus is related to aging and Alzheimer disease. Neurobiology of Aging 2000; 21(6):807–813.

    Article  PubMed  CAS  Google Scholar 

  58. Tsujioka Y, Takahashi M, Tsuboi Y et al. Localization and expression of cdc2 and cdk4 in Alzheimer brain tissue. Dementia and Geriatric Cognitive Disorders 1999; 10(3):192–198.

    Article  PubMed  CAS  Google Scholar 

  59. Giovanni A, Wirtz Brugger F, Keramaris E et al. Involvement of cell cycle elements, cyclin-dependent kinases, pRb, and E2F x DP, in B-amyloid-induced neuronal death. Journal of Biological Chemistry 1999; 274(27):19011–19016.

    Article  PubMed  CAS  Google Scholar 

  60. Arendt T, Holzer M, Gartner U. Neuronal expression of cycline dependent kinase inhibitors of the INK4 family in Alzheimer’s disease. Journal of Neural Transmission Vienna Austria 1996 1998; 105(8–9):949–960.

    Article  CAS  Google Scholar 

  61. McShea A, Harris PL, Webster KR et al. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. American Journal of Pathology 1997; 150(6):1933–1939.

    PubMed  CAS  Google Scholar 

  62. Ferrer I, Blanco R, Carmona M et al. Phosphorylated c-MYC expression in Alzheimer disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Neuropathology and Applied Neurobiology 2001; 27(5):343–351.

    Article  PubMed  CAS  Google Scholar 

  63. Raina AK, Pardo P, Rottkamp CA et al. Neurons in Alzheimer disease emerge from senescence. Mech Ageing Dev 2001; 123(1):3–9.

    Article  PubMed  CAS  Google Scholar 

  64. Arendt T. Alzheimer’s disease as a loss of differentiation control in a subset of neurons that retain immature features in the adult brain. Neurobiology of Aging 2000; 21(6):783–796.

    Article  PubMed  CAS  Google Scholar 

  65. Arendt T. Alzheimer’s disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience 2001; 102(4):723–765.

    Article  PubMed  CAS  Google Scholar 

  66. Arendt T. Disturbance of neuronal plasticity is a critical pathogenetic event in Alzheimer’s disease. International Journal of Developmental Neuroscience the Official Journal of the International Society for Developmental Neuroscience 2001; 19(3):231–245.

    PubMed  CAS  Google Scholar 

  67. Nagy Zs. Cell cycle regulatory failure in neurones: Causes and consequences. Neurobiology of Aging 2000; 21(6):761–769.

    Article  PubMed  CAS  Google Scholar 

  68. Arendt T, Schindler C, Bruckner MK et al. Plastic neuronal remodeling is impaired in patients with Alzheimer’s disease carrying apolipoprotein epsilon 4 allele. Journal of Neuroscience the Official Journal of the Society for Neuroscience 1997; 17(2):516–529.

    CAS  Google Scholar 

  69. Lustig RH. Sex hormone modulation of neural development in vitro. Hormones and Behavior 1994; 28(4):383–395.

    Article  PubMed  CAS  Google Scholar 

  70. Mussa GC, Mussa F, Bretto R et al. Influence of thyroid in nervous system growth. Minerva Pediatrica 2001; 53(4):325–353.

    PubMed  CAS  Google Scholar 

  71. Jordan Sciutto KL, Malaiyandi LM, Bowser R. Altered distribution of cell cycle transcriptional regulators during Alzheimer disease. Journal of Neuropathology and Experimental Neurology 2002; 61(4):358–367.

    PubMed  CAS  Google Scholar 

  72. Suzuki T, Oishi M, Marshak DR et al. Cell cycle-dependent regulation of the phosphorylation and metabolism of the Alzheimer amyloid precursor protein. EMBO Journal 1994; 13(5):1114–1122.

    PubMed  CAS  Google Scholar 

  73. Preuss U, Doring F, Illenberger S et al. Cell cycle-dependent phosphorylation and microtubule binding of tau protein stably transfected into Chinese hamster ovary cells. Molecular Biology of the Cell 1995; 6(10):1397–1410.

    PubMed  CAS  Google Scholar 

  74. Pope WB, Lambert MP, Leypold B et al. Microtubule-associated protein tau is hyperphosphorylated during mitosis in the human neuroblastoma cell line SH-SY5Y. Experimental Neurology 1994; 126(2):185–194.

    Article  PubMed  CAS  Google Scholar 

  75. Bancher C, Lassmann H, Breitschopf H et al. Mechanisms of cell death in Alzheimer’s disease. Journal of Neural Transmission. Supplementum 1997; 50 141–152.

    PubMed  CAS  Google Scholar 

  76. Stadelmann C, Deckwerth TL, Srinivasan A et al. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. American Journal of Pathology 1999; 155(5):1459–1466.

    PubMed  CAS  Google Scholar 

  77. Jellinger KA, Stadelmann CH. The enigma of cell death in neurodegenerative disorders. Journal of neural transmission. Supplementum 2000; (60):21–36.

    PubMed  Google Scholar 

  78. Kosel S, Egensperger R, von Eitzen U et al. On the question of apoptosis in the parkinsonian substantia nigra. Acta Neuropathologica 1997; 93(2):105–108.

    Article  PubMed  CAS  Google Scholar 

  79. Zhu X, Rottkamp CA, Boux H et al. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol 2000; 59(10):880–888.

    PubMed  CAS  Google Scholar 

  80. Paganelli AR, Ocana OH, Prat MI et al. The Alzheimer-related gene presenilin-1 facilitates sonic hedgehog expression in Xenopus primary neurogenesis. Mech Dev 2001; 107(1–2):119–131.

    Article  PubMed  CAS  Google Scholar 

  81. Janicki SM, Stabler SM, Monteiro MJ. Familial Alzheimer’s disease presenilin-1 mutants potentiate cell cycle arrest. Neurobiology of Aging 2000; 21(6):829–836.

    Article  PubMed  CAS  Google Scholar 

  82. Neve RL, McPhie DL, Chen Y. Alzheimer’s disease: Dysfunction of a signalling pathway mediated by the amyloid precursor protein? Biochem Soc Symp 2001; 67 37–50.

    PubMed  CAS  Google Scholar 

  83. Copani A, Condorelli F, Caruso A et al. Mitotic signaling by beta-amyloid causes neuronal death. Faseb J 1999; 13(15):2225–2234.

    PubMed  CAS  Google Scholar 

  84. Chen Y, McPhie DL, Hirschberg J et al. The amyloid precursor protein-binding protein APP-BP1 drives the cell cycle through the S-M checkpoint and causes apoptosis in neurons. J Biol Chem 2000; 275(12):8929–8935.

    Article  PubMed  CAS  Google Scholar 

  85. Giovanni A, Keramaris E, Morris EJ et al. E2F1 mediates death of B-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J Biol Chem 2000; 275(16):11553–11560.

    Article  PubMed  CAS  Google Scholar 

  86. Wu Q, Combs C, Cannady SB et al. Beta-amyloid activated microglia induce cell cycling and cell death in cultured cortical neurons. Neurobiol Aging 2000; 21(6):797–806.

    Article  PubMed  CAS  Google Scholar 

  87. Katchanov J, Harms C, Gertz K et al. Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J Neurosci 2001; 21(14):5045–5053.

    PubMed  CAS  Google Scholar 

  88. Guegan C, Levy V, David JP et al. c-Jun and cyclin Dl proteins as mediators of neuronal death after a focal ischaemic insult. Neuroreport 1997; 8(4):1003–1007.

    Article  PubMed  CAS  Google Scholar 

  89. Small DL, Monette R, Fournier MC et al. Characterization of cyclin Dl expression in a rat global model of cerebral ischemia. Brain Res 2001; 900(1):26–37.

    Article  PubMed  CAS  Google Scholar 

  90. Li Y, Chopp M, Powers C et al. Apoptosis and protein expression after focal cerebral ischemia in rat. Brain Res 1997; 765(2):301–312.

    Article  PubMed  CAS  Google Scholar 

  91. Li Y, Chopp M, Powers C et al. Immunoreactivity of cyclin Dl/cdk4 in neurons and oligodendrocytes after focal cerebral ischemia in rat. J Cereb Blood Flow Metab 1997; 17(8):846–856.

    Article  PubMed  CAS  Google Scholar 

  92. Li Y, Chopp M, Powers C. Granule cell apoptosis and protein expression in hippocampal dentate gyrus after forebrain ischemia in the rat. J Neurol Sci 1997; 150(2):93–102.

    Article  PubMed  CAS  Google Scholar 

  93. Hayashi T, Sakai K, Sasaki C et al. Phosphorylation of retinoblastoma protein in rat brain after transient middle cerebral artery occlusion. Neuropathol Appl Neurobiol 2000; 26(4):390–397.

    Article  PubMed  CAS  Google Scholar 

  94. Bossenmeyer-Pourie C, Koziel V, Daval JL. CPP32/CASPASE-3-like proteases in hypoxia-induced apoptosis in developing brain neurons. Brain Res Mol Brain Res 1999; 71(2):225–237.

    Article  PubMed  CAS  Google Scholar 

  95. Bossenmeyer-Pourie C, Chihab R, Schroeder H et al. Transient hypoxia may lead to neuronal proliferation in the developing mammalian brain: From apoptosis to cell cycle completion. Neuroscience 1999; 91(1):221–231.

    Article  PubMed  CAS  Google Scholar 

  96. Timsit S, Rivera S, Ouaghi P et al. Increased cyclin D1 in vulnerable neurons in the hippocampus after ischaemia and epilepsy: A modulator of in vivo programmed cell death? Eur J Neurosci 1999; 11(1):263–278.

    Article  PubMed  CAS  Google Scholar 

  97. Tomasevic G, Kamme F, Stubberod P et al. The tumor suppressor p53 and its response gene p21WAFl/Cipl are not markers of neuronal death following transient global cerebral ischemia. Neuroscience 1999; 90(3):781–792.

    Article  PubMed  CAS  Google Scholar 

  98. Esiri MM, Nagy Zs, Smith MZ et al. Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet 1999; 354(9182):919–920.

    Article  PubMed  CAS  Google Scholar 

  99. Nagy Zs, Esiri MM, Jobst KA et al. The effects of additional pathology on the cognitive deficit in Alzheimer disease. Journal of Neuropathology and Experimental Neurology 1997; 56(2):165–170.

    PubMed  CAS  Google Scholar 

  100. Smith MZ, Nagy Zs, Esiri MM. Cell cycle-related protein expression in vascular dementia and Alzheimer’s disease. Neuroscience Letters 1999; 271(1):45–48.

    Article  PubMed  CAS  Google Scholar 

  101. Smith MZ, Nagy Zs, Barnetson L et al. Coexisting pathologies in the brain: Influence of vascular disease and Parkinson’s disease on Alzheimer’s pathology in the hippocampus. Acta Neuropathologica 2000; 100(1):87–94.

    Article  PubMed  CAS  Google Scholar 

  102. Houser CR. Morphological changes in the dentate gyrus in human temporal lobe epilepsy. Epilepsy Res Suppl 1992; 7 223–234.

    PubMed  CAS  Google Scholar 

  103. Pollard H, Cantagrel S, Charriaut-Marlangue C et al. Apoptosis associated DNA fragmentation in epileptic brain damage. Neuroreport 1994; 5(9):1053–1055.

    Article  PubMed  CAS  Google Scholar 

  104. Dragunow M, Faull RL, Lawlor P et al. In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 1995; 6(7):1053–1057.

    Article  PubMed  CAS  Google Scholar 

  105. Bengzon J, Kokaia Z, Elmer E et al. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 1997; 94(19):10432–10437.

    Article  PubMed  CAS  Google Scholar 

  106. Zhang LX, Smith MA, Li XL et al. Apoptosis of hippocampal neurons after amygdala kindled seizures. Brain Res Mol Brain Res 1998; 55(2):198–208.

    Article  PubMed  CAS  Google Scholar 

  107. Ino H, Chiba T. Cyclin-dependent kinase 4 and cyclin Dl are required for excitotoxin-induced neuronal cell death in vivo. J Neurosci 2001; 21(16):6086–6094.

    PubMed  CAS  Google Scholar 

  108. Chen G, Zeng W, Yuan P et al. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 1999; 72(2): 879–882.

    Article  PubMed  CAS  Google Scholar 

  109. Madsen TM, Treschow A, Bengzon J et al. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 2000; 47(12):1043–1049.

    Article  PubMed  CAS  Google Scholar 

  110. Reid IC, Stewart CA. Seizures, memory and synaptic plasticity. Seizure 1997; 6(5):351–359.

    Article  PubMed  CAS  Google Scholar 

  111. Nagy Zs, Combrinck M, Budge M et al. Cell cycle kinesis in lymphocytes in the diagnosis of Alzheimer’s disease. Neuroscience Letters 2002; 317(2):81–84.

    Article  PubMed  CAS  Google Scholar 

  112. Stieler JT, Lederer C, Bruckner MK et al. Impairment of mitogenic activation of peripheral blood lymphocytes in Alzheimer’s disease. Neuroreport 2001; 12(18):3969–3972.

    Article  PubMed  CAS  Google Scholar 

  113. Uberti D, Carsana T, Bernardi E et al. Selective impairment of p53-mediated cell death in fibroblasts from sporadic Alzheimer’s disease patients. Journal of Cell Science 2002; 115 (Pt 15):3131–3138.

    Google Scholar 

  114. Dhavan R, Tsai LH. A decade of CDK5. Nature reviews. Molecular Cell Biology 2001; 2(10):749–759.

    PubMed  CAS  Google Scholar 

  115. Lasley EN. Neurobiology. Death leads to brain neuron birth. Science 2000; 288(5474):2111–2112.

    Article  PubMed  CAS  Google Scholar 

  116. Magavi SS, Leavitt BR, Macklis JD. Induction of neurogenesis in the neocortex of adult mice. Nature 2000; 405(6789):951–955.

    Article  PubMed  CAS  Google Scholar 

  117. Nottebohm F. Neuronal replacement in adult brain. Brain Research Bulletin 2002; 57(6):737–749.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Nagy, Z. (2005). Cell Cycle Activation and Cell Death in the Nervous System. In: Copani, A., Nicoletti, F. (eds) Cell-Cycle Mechanisms and Neuronal Cell Death. Neuroscience Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-29390-6_4

Download citation

Publish with us

Policies and ethics