Skip to main content
Log in

T Vector and Loop Characteristics Improve Detection of Myocardial Injury After Infarction

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Electrocardiography (ECG) is widely used to detect myocardial injury. ECG recordings after subendocardial, non-ST-elevation myocardial infarction (MI) may lack striking infarct patterns. A vectorcardiogram (VCG) of the T wave is a three-dimensional characterization of the ventricular repolarization and identifies abnormalities at an advanced level of analysis, which would normally be done manually from conventional ECG. Several parameters describing T vector loop morphology and T vector spatial orientation are examined with regard to their suitability for late MI detection. The discriminatory performance of VCG analysis is compared to that of conventional ECG analysis in identifying post-MI patients. T vector and T loop parameters as well as infarct indicators of the ECG recordings were calculated for 114 subjects: 59 patients (42 males; mean age: 54 years) 15 days after MI (11.9 ± 6.9 d) and 55 healthy controls (27 males; mean age: 49 years). ECG infarct indicators correctly identified 75.2 % of patients, while T vector and loop parameters correctly identified 83.2 % of patients. Discrimination analysis revealed a sensitivity of 66.7 % and a specificity of 77.4 % for conventional ECG, and a sensitivity of 71.7 % and a specificity of 88.7 % for the VCG parameters. T vector and loop characteristics were superior to conventional ECG in separating patients from controls. T vector ECG can improve the detection of myocardial injury and is applicable to the analysis of cardiac repolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Thygesen, K., Alpert, J. S., White, H. D., & Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. (2007). Universal definition of myocardial infarction. Journal of the American College of Cardiology, 50, 2173–2188.

    Article  MATH  Google Scholar 

  2. Gomez, J. F., Zareba, W., Moss, A. J., McNitt, S., & Hall, W. J. (2007). Prognostic value of location and type of myocardial infarction in the setting of advanced left ventricular dysfunction. American Journal of Cardiology, 99, 642–646.

    Article  Google Scholar 

  3. Valensi, P., Lorgis, L., & Cottin, Y. (2011). Prevalence, incidence, predictive factors and prognosis of silent myocardial infarction: A review of the literature. Archives of Cardiovascular Diseases, 104, 178–188.

    Article  Google Scholar 

  4. De Backer, G., Ambrosioni, E., Borch-Johnsen, K., Brotons, C., Cifkova, R., Dallongeville, J., et al. (2003). European guidelines on cardiovascular disease prevention in clinical practice: Third joint task force of european and other societies on cardiovascular disease prevention in clinical practice. European Heart Journal, 24, 1601–1610.

    Article  Google Scholar 

  5. McSharry, P. E., Clifford, G. D., Tarassenko, L., & Smith, L. A. (2003). A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering, 50, 289–294.

    Article  Google Scholar 

  6. Sameni, R., Clifford, G. D., Jutten, C., & Shamsollahi, M. B. (2003). Multichannel ECG and noise modelling: Application to maternal and fetal ECG signals. EURASIP Journal on Advances in Signal Processing, 43, 289–294.

    MATH  Google Scholar 

  7. La Foresta, F., Mammone, N., Inuso, G., & Morabito, F. C. (2009). Dynamic modeling of heart dipole vector for the ECG and VCG generation. Frontiers in Artificial Intelligence and Applications, 204, 281–290.

    Google Scholar 

  8. Frank, E. (1956). An accurate, clinically practical system for spatial vectorcardiography. Circulation, 13, 737–749.

    Article  Google Scholar 

  9. Dower, G. E. (1968). A lead synthesizer for the Frank system to simulate the standard 12-lead electrocardiogram. Journal of Electrocardiology, 1, 101–116.

    Article  Google Scholar 

  10. Guillem, M. S., Sahakian, A. V., & Swiryn, S. (2006). Derivation of orthogonal leads from the 12-lead ECG. Accuracy of a single transform for the derivation of atrial and ventricular waves. Computers in Cardiology, 33, 249–252.

    Google Scholar 

  11. Vahedi, F., Haney, M. F., Jensen, S. M., Näslund, U., & Bergfeldt, L. (2011). Effect of heart rate on ventricular repolarization in healthy individuals applying vectorcardiographic T vector and T vector loop analysis. Annals Noninvasive Electrocardiology, 16, 287–294.

    Article  Google Scholar 

  12. Rubulis, A., Bergfeldt, L., Rydén, L., & Jensen, J. (2010). Prediction of cardiovascular death and myocardial infarction by the QRS-T angle and T vector loop morphology after angioplasty in stable angina pectoris: an 8-year follow-up. Journal of Electrocardiology, 43, 310–317.

    Article  Google Scholar 

  13. Sederholm, M., Erhardt, L., & Sjogren, A. (1983). Continuous vectorcardiography in acute myocardial infarction. Natural course of ST and QRS vectors. International Journal of Cardiology, 4, 53–63.

    Article  MATH  Google Scholar 

  14. Karnegis, J. N., Matts, J., Tuna, N., & The POSCH Group (1985). Development and evolution of electrocardiographic Minnesota Q-QS codes in patients with acute myocardial infarction American Heart Journal, 110, 452–459.

    Article  Google Scholar 

  15. Cohen, M., Hawkins, L., Greenberg, S., & Fuster, V. (1991). Usefulness of ST-segment changes in greater than or equal to 2 leads on the emergency room electrocardiogram in either unstable angina pectoris or non-Q-wave myocardial infarction in predicting outcome. American Journal of Cardiology, 67, 1368–1373.

    Article  MATH  Google Scholar 

  16. Maeda, S., Imai, T., Kuboki, K., Chida, K., Watanabe, C., & Ohkawa, S.-I. (1996). Pathologic implications of restored positive T waves and persistent negative T waves after Q wave myocardial infarction. Journal of the American College of Cardiology, 28, 1514–1518.

    Article  Google Scholar 

  17. Bär, F. W., Brugada, P., Dassen, W. R., van der Werf, T., & Wellens, H. J. (1984). Prognostic value of Q waves, R/S ratio, loss of R wave voltage, ST-T segment abnormalities, electrical axis, low voltage and notching: Correlation of electrocardiogram and left ventriculogram. Journal of the American College of Cardiology, 4, 17–27.

    Article  Google Scholar 

  18. Pelter, M. M., & Adams, M. G. (2004). Wide QRS duration. American Journal of Critical Care, 13, 355–356.

    MATH  Google Scholar 

  19. Edhouse, J. A., Sakr, M., & Angus, J. (1999). Suspected myocardial infarction and left bundle branch block: electrocardiographic indication of acute ischemia. Journal of Accident and Emergency Medicine, 16, 331–335.

    Article  Google Scholar 

  20. Rubulis, A., Jensen, J., Lundahl, G., Tapanainen, J., Wecke, L., & Bergfeldt, L. (2004). T vector and loop characteristics in coronary artery disease and during acute ischemia. Heart Rhythm, 1, 317–325.

    Article  Google Scholar 

  21. Ertl, G., & Frantz, S. (2005). Healing after myocardial infarction. Cardiovascular Research, 66, 22–32.

    Article  Google Scholar 

  22. Ibrahim, T., Bulow, H. P., Hackl, T., Hornke, M., Nekolla, S. G., Breuer, M., et al. (2007). Diagnostic value of contrast-enhanced magnetic resonance imaging and single-photon emission computed tomography for detection of myocardial necrosis early after acute myocardial infarction. Journal of the American College of Cardiology, 49, 208–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Goernig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goernig, M., Hoeffling, B., Lau, S. et al. T Vector and Loop Characteristics Improve Detection of Myocardial Injury After Infarction. J. Med. Biol. Eng. 35, 381–386 (2015). https://doi.org/10.1007/s40846-015-0041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-015-0041-8

Keywords

Navigation