Skip to main content

Advertisement

Log in

Nonlinear time-frequency control of PM synchronous motor instability applicable to electric vehicle application

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Of the many technologies being explored to address sustainability and environmental issues, electric cars are considered to be the most promising alternative to vehicles powered by IC engines. This paper studies the instability control of electric vehicles propelled by permanent magnet synchronous motors (PMSMs). The nonlinear characteristics of a surface-mounted PMSM model are studied under three different assumed driving conditions. To mitigate undesirable dynamic instabilities including hyperchaotic responses that are frequented at low and high speeds, so as to extend the operating range of the PMSM system, a novel control scheme that exerts simultaneous control in both the time and frequency domains is developed and subsequently validated. The control approach has its foundation established in discrete wavelet transformation and adaptive control. Its physical implementation consists of an adaptive controller and an adaptive filter both implemented in the wavelet domain. Numerical results demonstrate the effectiveness of the controller design in restoring PMSM instability with low-amplitude limit-cycle in response to a properly specified reference signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sandalow DB (2009) Plug-in electric vehicles: what role for Washington? Brookings Institution Press, Washington

  2. Sperling D, Gordon D, Schwarzenegger A (2010) Two billion cars: driving toward sustainability. Oxford University Press, Oxford

    Google Scholar 

  3. Vu NTT, Choi HH, Jung JW (2012) Certainty equivalence adaptive speed controller for permanent magnet synchronous motor. Mechatronics 22(6):811–818

    Article  Google Scholar 

  4. Pillay P, Krishnan R (1991) Application characteristics of permanent magnet synchronous and brushless DC motors for servo drives. IEEE Trans Ind Appl 27(5):986–996

    Article  Google Scholar 

  5. Harb AM (2004) Nonlinear chaos control in a permanent magnet reluctance machine. Chaos Solitons Fract 19(5):1217–1224

    Article  MATH  Google Scholar 

  6. Ren H, Liu D (2006) Nonlinear feedback control of chaos in permanent magnet synchronous motor. IEEE Trans Circuits Syst II Express Briefs 53(1):45–50

    Article  Google Scholar 

  7. Ren H, Liu D, Li J (2003) Delay feedback control of chaos in permanent magnet synchronous motor. Proc China Soc Electron Eng 23(6):175–178 (In Chinese)

    Google Scholar 

  8. Guan H, Zhao Y, Sun Q, Liu Y, Zhang T (2010) Anticontrol of chaos for a class of stable smooth-air-gap PMSM systems via delayed feedback control. In: 2010 2nd international conference on industrial and information systems, vol. 2, pp 121–124

  9. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst 15(1):116–132

    MATH  Google Scholar 

  10. Wu Z-G, Shi P, Su H, Chu J (2014) Sampled-data fuzzy control of chaotic systems based on a T–S fuzzy model. IEEE Trans Fuzzy Syst 22(1):153–163

    Article  MathSciNet  Google Scholar 

  11. Nazzal JM, Natsheh AN (2007) Chaos control using sliding-mode theory. Chaos Solitons Fract 33(2):695–702

    Article  Google Scholar 

  12. Yau H-T, Yan J-J (2004) Design of sliding mode controller for Lorenz chaotic system with nonlinear input. Chaos Solitons Fract 19(4):891–898

    Article  MathSciNet  MATH  Google Scholar 

  13. Xiaohui Y, Liu X, Liu H, Xu S (2013) Fuzzy sliding-mode control of chaos in permanent magnet synchronous motor. Int J Digit Content Technol Appl 7(1):526–535

    Article  Google Scholar 

  14. Choi HH (2012) Adaptive control of a chaotic permanent magnet synchronous motor. Nonlinear Dyn 69(3):1311–1322

    Article  MathSciNet  MATH  Google Scholar 

  15. Chun-Lai L, Si-Min Y, Xiao-Shu L (2012) Fractional-order permanent magnet synchronous motor and its adaptive chaotic control. Chin Phys B 21(10):100506

    Article  Google Scholar 

  16. Ge X, Huang J (2005) Chaos control of permanent magnet synchronous motor. In: Proceedings of the eighth international conference on electrical machines and systems, vol. 1, pp 484–488

  17. Chang S, Lin B, Lue Y (2011) Dither signal effects on quenching chaos of a permanent magnet synchronous motor in electric vehicles. J Vib Control 17(12):1912–1918

    Article  MathSciNet  MATH  Google Scholar 

  18. Wei Q, Wang X (2012) Chaos controlling of permanent magnet synchronous motor base on dither signal. J Vib Control 19(16):2541–2550

    Article  Google Scholar 

  19. Andrievskii BR, Fradkov AL (2003) Control of chaos: methods and applications. I. Methods. Autom Remote Control 64(5):673–713

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu M-K, Suh CS (2012) Simultaneous time-frequency control of bifurcation and chaos. Commun Nonlinear Sci Numer Simul 17(6):2539–2550

    Article  MathSciNet  MATH  Google Scholar 

  21. Suh CS, Liu M-K (2013) Control of cutting vibration and instability: a time-frequency approach for precision micro and nano machining. Wiley, London

    Book  Google Scholar 

  22. Li Z, Zhang B, Tian L, Mao Z, Pong MH (1999) Strange attractor in permanent-magnet synchronous motors. In: Proceedings of the IEEE international conference on power electronics and drive systems, vo. 1, pp 150–155

  23. Hemati N (1994) Strange attractors in brushless DC motors. IEEE Trans Circuits Syst I Fundam Theory Appl 41(1):40–45

    Article  Google Scholar 

  24. Li Z, Park JB, Joo YH, Zhang B, Chen G (2002) Bifurcation and chaos in a permanent-magnet synchronous motor. IEEE Trans Circuits Syst I Fundam Theory Appl 49(3):383–387

    Article  Google Scholar 

  25. Gao Y, Chau KT (2002) Chaotification of permanent-magnet synchronous motor drives using time-delay feedback. In: IEEE 28th annual conference of the industrial electronics society, vol. 1, pp 762–766

  26. Goedtel A, da Silva IN, Serni PJA (2007) Load torque identification in induction motor using neural networks technique. Electr Power Syst Res 77(1):35–45

    Article  Google Scholar 

  27. Polikar R (1999) The story of wavelets. In: IMACS/IEEE CSCC’99 proceedings, pp 5481–5486

  28. Kuo SM, Morgan DR (1996) Active noise control systems: algorithms and DSP implementations. Wiley, London

    Google Scholar 

  29. Jensen A, la Cour-Harbo A (2001) Ripples in mathematics. Spring, Berlin

    Book  MATH  Google Scholar 

  30. Attallah S (2000) The wavelet transform-domain LMS algorithm: a more practical approach. IEEE Trans Circuits Syst II Analog Digit Signal Process 47(3):209–213

  31. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454:903–995

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Steve Suh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Suh, C.S. Nonlinear time-frequency control of PM synchronous motor instability applicable to electric vehicle application. Int. J. Dynam. Control 4, 400–412 (2016). https://doi.org/10.1007/s40435-014-0145-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-014-0145-y

Keywords

Navigation