Skip to main content
Log in

Poisson Summation Formula in Hardy Spaces \(H^p(T_\Gamma )\), \(p\in (0,1]\)

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

The Poisson summation formula for Hardy spaces \(H^p\left( T_\Gamma \right) \) in tubes \(T_\Gamma \subset \mathbb {C}^n\) for \(p\in \left( 0,1\right] \) is obtained. Unlike the case of \(L^p\left( \mathbb {R}^n\right) \) spaces, the formula holds everywhere in \(T_\Gamma \) without any additional assumptions. To the best of our knowledge, the result is new even for the univariate case—Hardy spaces in the upper half-plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedetto, J.J., Zimmermann, G.: Sampling multipliers and the Poisson summation formula. Dedicated to the memory of Richard J. Duffin. J. Fourier Anal. Appl. 3(5), 505–523 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Butzer, P.L., Stens, R.L., Schmeisser, G.: Basic relations valid for the Bernstein spaces \(B^2_\sigma \) and their extensions to larger function spaces via a unified distance concept. Function spaces X, pp. 41–55, Banach Center Publications, vol. 102. Polish Academy of Sciences. Institute of Mathematics, Warsaw (2014)

  3. Deshmukh, P.R., Gudadhe, A.S.: Poisson summation formula associated with the fractional Laplace transform. J. Sci. Arts 23(2), 151–158 (2013)

    MathSciNet  Google Scholar 

  4. Faifman, D.: A characterization of Fourier transform by Poisson summation formula. C. R. Math. Acad. Sci. Paris 348(7–8), 407–410 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gröchenig, K.: An uncertainty principle related to the Poisson summation formula. Stud. Math. 121(1), 87–104 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Guillemin, V., Melrose, R.: The Poisson summation formula for manifolds with boundary. Adv. Math. 32(3), 204–232 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hautot, A.: New applications of Poisson’s summation formula. J. Phys. A 8, 853–862 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Johnson-McDaniel, N.K.: A dimensionally continued Poisson summation formula. J. Fourier Anal. Appl. 18(2), 367–385 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kahane, J.-P., Lemarié-Rieusset, P.-G.: Remarques sur la formule sommatoire de Poisson (French). [Remarks on the Poisson summation formula]. Stud. Math. 109(3), 303–316 (1994)

    MATH  Google Scholar 

  11. Katznelson, Y.: Une remarque concernant la formule de Poisson (French). Stud. Math. 29, 107–108 (1967)

    MathSciNet  MATH  Google Scholar 

  12. Lev, N., Olevskii, A.: Quasicrystals and Poisson’s summation formula. Invent. Math. 200(2), 585–606 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liflyand, E., Stadtmüller, U.: Poisson summation for functions of bounded variation on \(\mathbb{R}^d\). Acta Sci. Math. (Szeged) 80(3–4), 491–498 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miller, S.D., Schmid, W.: Summation formulas, from Poisson and Voronoi to the present. In: Noncommutative Harmonic Analysis, pp. 419–440. Progress in Mathematics, vol. 220. Birkhäuser, Boston (2004)

  15. Mordell, L.J.: Poisson’s summation formula in several variables and some applications to the theory of numbers. Math. Proc. Camb. Philos. Soc. 25(04), 412–420 (1929)

    Article  MATH  Google Scholar 

  16. Panaretos, A.H., Anastassiu, H.T., Kaklamani, D.I.: A note on the Poisson summation formula and its application to electromagnetic problems involving cylindrical coordinates. Turk. J. Electr. Eng. 10(2), 377–384 (2002)

    Google Scholar 

  17. Riemann, B.: Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Mon. Not. Berlin Akad. (Nov. 1859), pp. 671–680 (1859)

  18. Soljanik, A.A.: On the order of approximation to functions of \(H^p\) (R) (\(0 < p \le 1\)) by certain means of Fourier integrals. Anal. Math. 12(1), 59–75 (1986)

  19. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  20. Trigub, R.M.: A generalization of the Euler–Maclaurin formula (Russian) Mat. Zamet. 61(2), 312–316 (1997). Translation in Mathematical Notes 61(1–2), 253–257 (1997)

  21. Trigub, R.M., Bellinsky, E.S.: Fourier Analysis and Approximation of Functions. Kluwer Academic Publishers, Dordrecht (2004)

    Book  MATH  Google Scholar 

  22. Tovstolis, A.V.: Fourier multipliers in Hardy spaces in tube domains over open cones and their applications. Methods Funct. Anal. Topol. 4(1), 68–89 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Tovstolis, A.V.: Fourier multipliers in Hardy spaces in tubes over open cones. Comput. Methods Funct. Theory 14(4), 681–719 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous referees for their valuable suggestions helping to improve the article. In particular, they led to including references to several interesting results on Poisson summation formula we had missed. The authors also thank Dr. John Paul Ward (University of Central Florida) for useful interactions during the presentation of the proof at the Analysis seminar at the University of Central Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Tovstolis.

Additional information

Communicated by Dmitry Khavinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Tovstolis, A.V. Poisson Summation Formula in Hardy Spaces \(H^p(T_\Gamma )\), \(p\in (0,1]\) . Comput. Methods Funct. Theory 16, 689–697 (2016). https://doi.org/10.1007/s40315-016-0170-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-016-0170-2

Keywords

Mathematics Subject Classification

Navigation