Skip to main content
Log in

Robust Controllers Using Generalizations of the LQG/LTR Method

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper deals with the design of robust fixed parameter controllers, using the target feedback loop/loop transfer recovery (TFL/LTR) technique with two controller structures that will be evaluated with sets of specifications for robust stability and performance of a laboratory helicopter. This helicopter is an underactuated nonlinear system, having three degrees of freedom and two actuators. The first structure considered in the evaluation is the LQG/LTR compensator; it is used as reference for performance evaluation. The second structure results from a variation of the LQG/LTR method. It does not have a specific name and in this paper is called structure #2. For both techniques, designed compensators shall solve the problem of tracking of reference trajectories, ensuring performance and stability, despite parametric disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Afonso, R. J. M., Kienitz, K. H., & Galvo, R. K. H. (2009). Projeto de um controlador robusto para um modelo de um helicóptero com três graus de liberdade baseado no método LQG/LTR (Design of a robust controller for a model of a helicopter with three degrees of freedom based on LQG/LTR method), \(3^o\) CTA-DLR Workshop on Data Analysis & Flight Control.

  • Amaral, L. P. (1995). Controladores robustos com a metodologia de escalonamento de ganhos (Robust controllers with the methodology of scaling gains). Master thesis, Instituto Tecnológico de Aeronaútica.

  • Apkarian, J., & Dawes, A. (2000). Interactive control education with virtual presence on the web. American Control Conference, 6, 3985–3990.

    Google Scholar 

  • Athans, M. (1986). A tutorial on the LQG/LTR method. American Control Conference, 2, 1289–1296.

    Google Scholar 

  • Breckenfeld, R. P. (2007). Controle adaptativo de um helicóptero de laboratório com três graus de liberdade (Adaptive control of a helicopter with three degrees of freedom). Master thesis, Instituto Tecnológico de Aeronáutica.

  • Bryson, A. E., & Jr, Y.-C. H. (1975). Applied optimal control. Oxford: Oxford-Press.

    Google Scholar 

  • Cavalca, M. S. M. & Kienitz, K. H. (2009). Application of TFL/LTR robust control techniques to failure accommodation, 20th International Congress of Mechanical Engineering (pp. 1–8).

  • Doyle, J. C., & Stein, G. (1979). Robustness with observers. IEEE Transactions on Automatic Control, 17, 607–611.

    Article  MathSciNet  Google Scholar 

  • Doyle, C. J., & Stein, G. (1981). Multivariable feedback design: Concepts for a classical/modern synthesis. IEEE Transactions on Automatic Control, AC–26, 4–16.

    Article  Google Scholar 

  • Chen, B. M. & Saberi, A. S. P. (1990). A new stable compensator design for exact and approximate loop transfer recovery. American Control Conference 812–817.

  • da Cruz, J. J. (1996). Controle Robusto Multivariável (Robust Multivariable Control). Sao Paulo: Universidade de São Paulo- EDUSP.

  • Dorato, P. (1993). Bibliography on robust control. Automatica, 29, 201–213.

    Article  MATH  MathSciNet  Google Scholar 

  • Faleiros, A. C, & Yoneyama, T. (2002). Teoria Matemática de Sistemas (Mathematical Theory of Systems), Arte & Ciência.

  • Geering, H. P. (1996). Regelungstechnik. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Khan, A. Q., Mustafa, G., & Iqbal, N. (2005). LQG/LTR based controller design for three degree of freedom helicopter/twin rotor control system., 9th International Multitopic Conference. IEEE INMIC 2005 (pp. 1–5).

  • Kirk, D. E. (1970). Optimal control theory: An Introduction. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Kwakernaak, H., & Sivan, R. (1972). Linear optimal control systems. New York: Wiley.

    MATH  Google Scholar 

  • Lehtomaki, N., & Sandell, N. J. A. M. (1981). Robustness results in linear quadratic gaussian based multivariable design. IEEE Transactions on Automatic Control, 26, 75–93.

    Article  MATH  MathSciNet  Google Scholar 

  • Lopes, R. V. (2007). Modelagem e controle preditivo de um helicóptero com três graus de liberdade (Modelling and preditive control of a helicopter with three degrees of freedom). Master thesis, Instituto Tecnológico de Aeronáutica.

  • Maciejowski, J. M. (1989). Multivariable feedback design. New York: Addison Wesley.

    MATH  Google Scholar 

  • Maia, M. H. (2008). Controle preditivo robusto de um helicóptero com três graus de liberdade sujeito a perturbações externas (Robust preditive control of a helicopter with three degrees of freedom subject to external disturbances). Master thesis, Instituto Tecnológico de Aeronáutica.

  • Mehrtash, M, & Khamesee, M. B. (2011). Design and implementation of LQG/LTR controller for a magnetic telemanipulation system-performance evaluation and energy saving. 20th ASME Annual Conference on Information Storage and Processing Systems (ISPS) 17 (pp. 1135–1143).

  • Pereira, R. L. (2011). Controladores robustos utilizando generalizacções do método LQG/LTR (Robust controllers using generalizations of the LQG/LTR method). Master thesis, Instituto Tecnológico de Aeronáutica.

  • Prakash, R. (1990). Target feedback loop/loop transfer recovery (TFL/LTR) robust control design procedures. 29th Conference on Decision and Control (pp. 1203–1209).

  • Quanser (2005). Quanser 3D helicopter system (with active disturbance), Technical report.

  • Skogestad, S., & Postlethwaite, I. (2001). Multivariable feedback control: Analysis and design. New York: Wiley.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge support provided by CAPES and FAPESP (Grant 2011/17610-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renan Lima Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, R.L., Kienitz, K.H. Robust Controllers Using Generalizations of the LQG/LTR Method. J Control Autom Electr Syst 25, 273–282 (2014). https://doi.org/10.1007/s40313-014-0120-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-014-0120-z

Keywords

Navigation