Skip to main content
Log in

Ranolazine

A Review of Its Use as Add-On Therapy in Patients with Chronic Stable Angina Pectoris

  • Adis Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Extended-release ranolazine (ranolazine ER) [Ranexa®] is an antianginal agent that achieves its effects via a novel mechanism of action (inhibition of the late phase of the inward sodium current), without affecting heart rate or blood pressure (BP). This article reviews the efficacy, safety and tolerability of ranolazine ER as add-on therapy in patients with chronic stable angina pectoris, as well as summarizing its pharmacological properties and its use in non-ST-elevation acute coronary syndromes. In the CARISA and ERICA trials, add-on therapy with ranolazine ER improved exercise tolerance and/or reduced angina frequency and nitroglycerin use in patients with chronic stable angina; benefits were seen across a variety of patient subgroups. Although results of the MERLIN-TIMI 36 trial do not support the use of ranolazine ER in the acute management of non-ST-elevation acute coronary syndromes, they do support its use as an antianginal therapy. Ranolazine ER was generally well tolerated, with the most commonly reported adverse events including dizziness, nausea, asthenia and constipation. Despite being associated with modest increases in the corrected QT interval, ranolazine ER demonstrated antiarrhythmic effects in the MERLIN-TIMI 36 trial. In conclusion, ranolazine ER provides an important option for use as add-on therapy to reduce symptoms in patients with chronic stable angina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lopez-Sendon J, Purcell H, Camici P, et al. Chronic stable angina guidelines: is there an emerging international consensus? Br J Cardiol. 2012;19(Suppl. 2):S2–11.

    Google Scholar 

  2. Boden WE, O’Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16.

    Article  PubMed  CAS  Google Scholar 

  3. Chaitman BR, Skettino SL, Parker JO, et al. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J Am Coll Cardiol. 2004;43(8):1375–82.

    Article  PubMed  CAS  Google Scholar 

  4. European Medicines Agency. Ranexa (ranolazine): EU summary of product characteristics. 2011. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000805/human_med_001009.jsp&mid=WC0b01ac058001d124. Accessed 12 Sep 2012.

  5. Keating GM. Ranolazine: a review of its use in chronic stable angina pectoris. Drugs. 2008;68(17):2483–503.

    Article  PubMed  CAS  Google Scholar 

  6. Jerling M. Clinical pharmacokinetics of ranolazine. Clin Pharmacokinet. 2006;45(5):469–91.

    Article  PubMed  CAS  Google Scholar 

  7. Hasenfuss G, Maier LS. Mechanism of action of the new anti-ischemia drug ranolazine. Clin Res Cardiol. 2008;97(4):222–6.

    Article  PubMed  CAS  Google Scholar 

  8. Belardinelli L, Shryock JC, Fraser H. Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart. 2006;92(Suppl. 4):iv6–iv14.

    Google Scholar 

  9. Maier LS. A novel mechanism for the treatment of angina, arrhythmias, and diastolic dysfunction: inhibition of late INa using ranolazine. J Cardiovasc Pharmacol. 2009;54(4):279–86.

    Article  PubMed  CAS  Google Scholar 

  10. Sossalla S, Maier LS. Role of ranolazine in angina, heart failure, arrhythmias, and diabetes. Pharmacol Ther. 2012;133(3):311–23.

    Article  PubMed  CAS  Google Scholar 

  11. Antzelevitch C, Belardinelli L, Zygmunt AC, et al. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation. 2004;110(8):904–10.

    Article  PubMed  CAS  Google Scholar 

  12. Undrovinas AI, Belardinelli L, Undrovinas NA, et al. Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol. 2006;17(Suppl. 1):S169–77.

    Article  PubMed  Google Scholar 

  13. Song Y, Shryock JC, Wu L, et al. Antagonism by ranolazine of the pro-arrhythmic effects of increasing late INa in guinea pig ventricular myocytes. J Cardiovasc Pharmacol. 2004;44(2):192–9.

    Article  PubMed  CAS  Google Scholar 

  14. Song Y, Shryock JC, Wagner S, et al. Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction. J Pharmacol Exp Ther. 2006;318(1):214–22.

    Article  PubMed  CAS  Google Scholar 

  15. Sossalla S, Wagner S, Rasenack EC, et al. Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts: role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol. 2008;45(1):32–43.

    Article  PubMed  CAS  Google Scholar 

  16. Fredj S, Sampson KJ, Liu H, et al. Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action. Br J Pharmacol. 2006;148(1):16–24.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang XQ, Yamada S, Barry WH. Ranolazine inhibits an oxidative stress-induced increase in myocyte sodium and calcium loading during simulated-demand ischemia. J Cardiovasc Pharmacol. 2008;51(5):443–9.

    Article  PubMed  CAS  Google Scholar 

  18. Fraser H, Belardinelli L, Wang L, et al. Ranolazine decreases diastolic calcium accumulation caused by ATX-II or ischemia in rat hearts. J Mol Cell Cardiol. 2006;41(6):1031–8.

    Article  PubMed  CAS  Google Scholar 

  19. Venkataraman R, Belardinelli L, Blackburn B, et al. A study of the effects of ranolazine using automated quantitative analysis of serial myocardial perfusion images. JACC Cardiovasc Imaging. 2009;2(11):1301–9.

    Article  PubMed  Google Scholar 

  20. Chaitman BR, Pepine CJ, Parker JO, et al. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA. 2004;291(3):309–16.

    Article  PubMed  CAS  Google Scholar 

  21. Zhao G, Walsh E, Shryock JC, et al. Antiadrenergic and hemodynamic effects of ranolazine in conscious dogs. J Cardiovasc Pharmacol. 2011;57(6):639–47.

    Article  PubMed  CAS  Google Scholar 

  22. Stone PH, Chaitman BR, Stocke K, et al. The anti-ischemic mechanism of action of ranolazine in stable ischemic heart disease. J Am Coll Cardiol. 2010;56(12):934–42.

    Article  PubMed  CAS  Google Scholar 

  23. Stone PH, Gratsiansky NA, Blokhin A, et al. Antianginal efficacy of ranolazine when added to treatment with amlodipine: the ERICA (Efficacy of Ranolazine in Chronic Angina) trial. J Am Coll Cardiol. 2006;48(3):566–75.

    Article  PubMed  CAS  Google Scholar 

  24. Venkataraman R, Aljaroudi W, Belardinelli L, et al. The effect of ranolazine on the vasodilator-induced myocardial perfusion abnormality. J Nucl Cardiol. 2011;18(3):456–62.

    Article  PubMed  Google Scholar 

  25. Wu L, Shryock JC, Song Y, et al. An increase in late sodium current potentiates the proarrhythmic activities of low-risk QT-prolonging drugs in female rabbit hearts. J Pharmacol Exp Ther. 2006;316(2):718–26.

    Article  PubMed  CAS  Google Scholar 

  26. Wu L, Shryock JC, Song Y, et al. Antiarrhythmic effects of ranolazine in a guinea pig in vitro model of long-QT syndrome. J Pharmacol Exp Ther. 2004;310(2):599–605.

    Article  PubMed  CAS  Google Scholar 

  27. Wang W-Q, Robertson C, Dhalla AK, et al. Antitorsadogenic effects of (±)-N-(2,6-dimethyl-phenyl)-(4[2-hydroxy-3-(2-methoxyphenoxy)propyl]-1-piperazine (ranolazine) in anesthetized rabbits. J Pharmacol Exp Ther. 2008;325(3):875–81.

    Article  PubMed  CAS  Google Scholar 

  28. Schram G, Zhang L, Derakhchan K, et al. Ranolazine: ion-channel-blocking actions and in vivo electrophysiological effects. Br J Pharmacol. 2004;142(8):1300–8.

    Article  PubMed  CAS  Google Scholar 

  29. Gralinski MR, Chi L, Park JL, et al. Protective effects of ranolazine on ventricular fibrillation induced by activation of the ATP-dependent potassium channel in the rabbit heart. J Cardiovasc Pharmacol Ther. 1996;1(2):141–8.

    PubMed  CAS  Google Scholar 

  30. Kloner RA, Dow JS, Bhandari A. The antianginal agent ranolazine is a potent antiarrhythmic agent that reduces ventricular arrhythmias: through a mechanism favoring inhibition of late sodium channel. Cardiovasc Ther. 2011;29(4):e36–41.

    Article  PubMed  Google Scholar 

  31. Sicouri S, Glass A, Belardinelli L, et al. Antiarrhythmic effects of ranolazine in canine pulmonary vein sleeve preparations. Heart Rhythm. 2008;5(7):1019–26.

    Article  PubMed  Google Scholar 

  32. Dhalla AK, Wang W-Q, Dow J, et al. Ranolazine, an antianginal agent, markedly reduces ventricular arrhythmias induced by ischemia and ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2009;297(5):H1923–9.

    Article  PubMed  CAS  Google Scholar 

  33. Kumar K, Nearing BD, Bartoli CR, et al. Effect of ranolazine on ventricular vulnerability and defibrillation threshold in the intact porcine heart. J Cardiovasc Electrophysiol. 2008;19(10):1073–9.

    Article  PubMed  Google Scholar 

  34. Morita N, Lee JH, Xie Y, et al. Suppression of re-entrant and multifocal ventricular fibrillation by the late sodium current blocker ranolazine. J Am Coll Cardiol. 2011;57(3):366–75.

    Article  PubMed  CAS  Google Scholar 

  35. Matsumura H, Hara A, Hashizume H, et al. Protective effects of ranolazine, a novel anti-ischemic drug, on the hydrogen peroxide-induced derangements in isolated, perfused rat heart: comparison with dichloroacetate. Jpn J Pharmacol. 1998;77(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  36. Hwang H, Arcidi JM Jr, Hale SL, et al. Ranolazine as a cardioplegia additive improves recovery of diastolic function in isolated rat hearts. Circulation. 2009;120(Suppl. 1):S16–21.

    Article  PubMed  CAS  Google Scholar 

  37. Hwang H, Arcidi JM Jr, Hale SL, et al. Ranolazine as an adjunct to cardioplegia: a potential new therapeutic application. J Cardiovasc Pharmacol Ther. 2009;14(2):125–33.

    Article  PubMed  CAS  Google Scholar 

  38. Rastogi S, Sharov VG, Mishra S, et al. Ranolazine combined with enalapril or metoprolol prevents progressive LV dysfunction and remodeling in dogs with moderate heart failure. Am J Physiol Heart Circ Physiol. 2008;295(5):H2149–55.

    Article  PubMed  CAS  Google Scholar 

  39. Gralinski MR, Black SC, Kilgore KS, et al. Cardioprotective effects of ranolazine (RS-43285) in the isolated perfused rabbit heart. Cardiovasc Res. 1994;28(8):1231–7.

    Article  PubMed  CAS  Google Scholar 

  40. Sabbah HN, Chandler MP, Mishima T, et al. Ranolazine, a partial fatty acid oxidation (pFOX) inhibitor, improves left ventricular function in dogs with chronic heart failure. J Card Fail. 2002;8(6):416–22.

    Article  PubMed  CAS  Google Scholar 

  41. Chandler MP, Stanley WC, Morita H, et al. Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure. Circ Res. 2002;91(4):278–80.

    Article  PubMed  CAS  Google Scholar 

  42. Hayashida W, van Eyll C, Rousseau MF, et al. Effects of ranolazine on left ventricular regional diastolic function in patients with ischemic heart disease. Cardiovasc Drugs Ther. 1994;8(5):741–7.

    Article  PubMed  CAS  Google Scholar 

  43. Moss AJ, Zareba W, Schwarz KQ, et al. Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J Cardiovasc Electrophysiol. 2008;19(12):1289–93.

    Article  PubMed  Google Scholar 

  44. Maier L, Wachter R, Edelmann F, et al. Ranolazine for the treatment of diastolic heart failure in patients with preserved ejection fraction: results from the RALI-DHF study (abstract no. 921-8). 61st Annual Scientific Sessions of the American College of Cardiology, Chicago 24–27 Mar 2012.

  45. Jacobshagen C, Belardinelli L, Hasenfuss G, et al. Ranolazine for the treatment of heart failure with preserved ejection fraction: background, aims, and design of the RALI-DHF study. Clin Cardiol. 2011;34(7):426–32.

    Article  PubMed  Google Scholar 

  46. Figueredo VM, Pressman GS, Romero-Corral A, et al. Improvement in left ventricular systolic and diastolic performance during ranolazine treatment in patients with stable angina. J Cardiovasc Pharmacol Ther. 2011;16(2):168–72.

    Article  PubMed  CAS  Google Scholar 

  47. Venkataraman R, Chen J, Garcia EV, et al. Effect of ranolazine on left ventricular dyssynchrony in patients with coronary artery disease. Am J Cardiol. 2012;110(10):1440–5.

    Article  PubMed  CAS  Google Scholar 

  48. Timmis AD, Chaitman BR, Crager M. Effects of ranolazine on exercise tolerance and HbA1c in patients with chronic angina and diabetes. Eur Heart J. 2006;27(1):42–8.

    Article  PubMed  CAS  Google Scholar 

  49. Morrow DA, Scirica BM, Chaitman BR, et al. Evaluation of the glycometabolic effects of ranolazine in patients with and without diabetes mellitus in the MERLIN-TIMI 36 randomized controlled trial. Circulation. 2009;119(15):2032–9.

    Article  PubMed  CAS  Google Scholar 

  50. Chisholm JW, Goldfine AB, Dhalla AK, et al. Effect of ranolazine on A1C and glucose levels in hyperglycemic patients with non-ST elevation acute coronary syndrome. Diabetes Care. 2010;33(6):1163–8.

    Article  PubMed  CAS  Google Scholar 

  51. Ning Y, Zhen W, Fu Z, et al. Ranolazine increases β-cell survival and improves glucose homeostasis in low-dose streptozotocin-induced diabetes in mice. J Pharmacol Exp Ther. 2011;337(1):50–8.

    Article  PubMed  CAS  Google Scholar 

  52. Deshmukh SH, Patel SR, Pinassi E, et al. Ranolazine improves endothelial function in patients with stable coronary artery disease. Coron Artery Dis. 2009;20(5):343–7.

    Article  PubMed  Google Scholar 

  53. Penman AD, Eadie J, Herron WJ, et al. The characterization of the metabolites of ranolazine in man by liquid chromatography mass spectrometry. Rapid Commun Mass Spectrom. 1995;9(14):1418–30.

    Article  PubMed  CAS  Google Scholar 

  54. Jerling M, Abdallah H. Effect of renal impairment on multiple-dose pharmacokinetics of extended-release ranolazine. Clin Pharmacol Ther. 2005;78(3):288–97.

    Article  PubMed  CAS  Google Scholar 

  55. Abdallah H, Jerling M. Effect of hepatic impairment on the multiple-dose pharmacokinetics of ranolazine sustained-release tablets. J Clin Pharmacol. 2005;45(7):802–9.

    Article  PubMed  CAS  Google Scholar 

  56. Jerling M, Huan B-L, Leung K, et al. Studies to investigate the pharmacokinetic interactions between ranolazine and ketoconazole, diltiazem, or simvastatin during combined administration in healthy subjects. J Clin Pharmacol. 2005;45(4):422–33.

    Article  PubMed  CAS  Google Scholar 

  57. Wang X, Bingham J, DeVault A, et al. Pharmacokinetic interaction between ranolazine and the CYP2D6 substrate metoprolol in healthy volunteers (abstract no. 72). J Clin Pharmacol. 2009;49(9):1107.

    Article  Google Scholar 

  58. Morrow DA, Scirica BM, Karwatowska-Prokopczuk E, et al. Effects of ranolazine on recurrent cardiovascular events in patients with non-ST-elevation acute coronary syndromes: the MERLIN-TIMI 36 randomized trial. JAMA. 2007;297(16):1775–83.

    Article  PubMed  CAS  Google Scholar 

  59. Bennett NM, Arndt TL, Iyer V, et al. Ranolazine refractory angina registry trial: 1-year results (abstract no. 1074–362). J Am Coll Cardiol. 2011;57(14):E1050.

    Article  Google Scholar 

  60. López-Sendón J, Lee S, Cheng ML, et al. Effects of ranolazine on exercise tolerance and angina frequency in patients with severe chronic angina receiving maximally-tolerated background therapy: analysis from the Combination Assessment of Ranolazine In Stable Angina (CARISA) randomized trial. Eur J Prev Cardiol. 2012;19(5):952–9.

    Article  Google Scholar 

  61. White HD, Skettino S, Chaitman BR, et al. Anti-anginal efficacy of ranolazine addition to beta blocker or calcium antagonist therapy in patients with a history of heart failure (abstract no. 1746). Circulation. 2002;106 (19 Suppl. 2):349–50.

    Google Scholar 

  62. Wenger NK, Chaitman B, Vetrovec GW. Gender comparison of efficacy and safety of ranolazine for chronic angina pectoris in four randomized clinical trials. Am J Cardiol. 2007;99(1):11–8.

    Article  PubMed  CAS  Google Scholar 

  63. Rich MW, Crager M, McKay CR. Safety and efficacy of extended-release ranolazine in patients aged 70 years or older with chronic stable angina pectoris. Am J Geriatr Cardiol. 2007;16(4):216–21.

    Article  PubMed  Google Scholar 

  64. Arnold SV, Morrow DA, Wang K, et al. Effects of ranolazine on disease-specific health status and quality of life among patients with acute coronary syndromes: results from the MERLIN-TIMI 36 randomized trial. Circ Cardiovasc Qual Outcomes. 2008;1(2):107–15.

    Article  PubMed  Google Scholar 

  65. Wilson SR, Scirica BM, Braunwald E, et al. Efficacy of ranolazine in patients with chronic angina: observations from the randomized, double-blind, placebo-controlled MERLIN-TIMI (Metabolic Efficiency With Ranolazine for Less Ischemia in Non-ST-Segment Elevation Acute Coronary Syndromes) 36 Trial. J Am Coll Cardiol. 2009;53(17):1510–6.

    Article  PubMed  CAS  Google Scholar 

  66. Mega JL, Hochman JS, Scirica BM, et al. Clinical features and outcomes of women with unstable ischemic heart disease: observations from metabolic efficiency with ranolazine for less ischemia in non-ST-elevation acute coronary syndromes-thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36). Circulation. 2010;121(16):1809–17.

    Article  PubMed  Google Scholar 

  67. Morrow DA, Scirica BM, Sabatine MS, et al. B-type natriuretic peptide and the effect of ranolazine in patients with non-ST-segment elevation acute coronary syndromes: observations from the MERLIN-TIMI 36 (Metabolic Efficiency With Ranolazine for Less Ischemia in Non-ST Elevation Acute Coronary-Thrombolysis In Myocardial Infarction 36) trial. J Am Coll Cardiol. 2010;55(12):1189–96.

    Article  PubMed  CAS  Google Scholar 

  68. Scirica BM, Morrow DA, Budaj A, et al. Ischemia detected on continuous electrocardiography after acute coronary syndrome: observations from the MERLIN-TIMI 36 (Metabolic Efficiency With Ranolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndrome-Thrombolysis In Myocardial Infarction 36) trial. J Am Coll Cardiol. 2009;53(16):1411–21.

    Article  PubMed  Google Scholar 

  69. Koren MJ, Crager MR, Sweeney M. Long-term safety of a novel antianginal agent in patients with severe chronic stable angina: the Ranolazine Open Label Experience (ROLE). J Am Coll Cardiol. 2007;49(10):1027–34.

    Article  PubMed  CAS  Google Scholar 

  70. Scirica BM, Morrow DA, Hod H, et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non-ST-segment-elevation acute coronary syndrome: results from the metabolic efficiency with ranolazine for less ischemia in non-ST-elevation acute coronary syndrome-thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation. 2007;116(15):1647–52.

    Article  PubMed  CAS  Google Scholar 

  71. Scirica BM, Braunwald E, Belardinelli L, et al. Relationship between nonsustained ventricular tachycardia after non-ST-elevation acute coronary syndrome and sudden cardiac death: observations from the metabolic efficiency with ranolazine for less ischemia in non-ST-elevation acute coronary syndrome-thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation. 2010;122(5):455–62.

    Article  PubMed  CAS  Google Scholar 

  72. Scirica BM, Belardinelli L, Chaitman BR, et al. Effect of ranolazine on atrial fibrillation among patients with non-ST elevation acute coronary syndromes (NSTEACS): observations from the MERLIN-TIMI 36 trial (abstract no. 13798). Circulation. 2011;124(21 suppl 1)

  73. Boden WE. Ranolazine and its anti-ischemic effects: revisiting an old mechanistic paradigm anew? J Am Coll Cardiol. 2010;56(12):943–5.

    Article  PubMed  CAS  Google Scholar 

  74. National Institute for Health and Clinical Excellence. Management of stable angina. 2011. http://www.nice.org.uk/nicemedia/live/13549/55660/55660.pdf. Accessed 27 Sep 2012.

  75. Deedwania PC, Carbajal EV. Medical therapy versus myocardial revascularization in chronic coronary syndrome and stable angina. Am J Med. 2011;124(8):681–8.

    Article  PubMed  Google Scholar 

  76. Aslam S, Gray D. Ranolazine (Ranexa®) in the treatment of chronic stable angina. Adv Ther. 2010;27(4):193–201.

    Article  PubMed  CAS  Google Scholar 

  77. Truffa AA, Newby LK, Melloni C. Extended-release ranolazine: critical evaluation of its use in stable angina. Vasc Health Risk Manag. 2011;7:535–9.

    PubMed  CAS  Google Scholar 

  78. Zuchi C, Tritto I, Ambrosio G. Angina pectoris in women: focus on microvascular disease. Epub Int J Cardiol; 2012

  79. Mehta PK, Goykhman P, Thomson LEJ, et al. Ranolazine improves angina in women with evidence of myocardial ischemia but no obstructive coronary artery disease. JACC Cardiovasc Imaging. 2011;4(5):514–22.

    Article  PubMed  Google Scholar 

  80. Belsey J, Vardas P, Camm J. Relative efficacy of antianginal drugs used in an add-on role in patients with stable angina: systematic review and meta-analysis (abstract no. 15298). Circulation. 2012;126(21 Suppl.).

  81. European Medicines Agency. Corlentor (ivabradine): EU summary of product characteristics. 2012. http://www.emea.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000598/WC500035341.pdf. Accessed 19 Nov 2012.

  82. Cingolani E, Lepor NE, Singh BN. The electrophysiological properties of ranolazine: a metabolic anti-ischemic drug or an energy-efficient antiarrhythmic agent? Rev Cardiovasc Med. 2011;12(3):136–42.

    PubMed  Google Scholar 

  83. Murdock DK, Reiffel JA, Kaliebe J, et al. The conversion of paroxysmal or initial onset atrial fibrillation with oral ranolazine: implications for a new ‘pill-in-pocket’ approach in structural heart disease. J Atr Fibrillation. 2010;2(1):705–10.

    Google Scholar 

  84. Murdock DK, Kaliebe J, Larrain G. The use of ranolazine to facilitate electrical cardioversion in cardioversion-resistant patients: a case series. Pacing Clin Electrophysiol. 2012;35(3):302–7.

    Article  PubMed  Google Scholar 

  85. Fragakis N, Koskinas KC, Katritsis DG, et al. Comparison of effectiveness of ranolazine plus amiodarone versus amiodarone alone for conversion of recent-onset atrial fibrillation. Am J Cardiol. 2012;110(5):673–7.

    Article  PubMed  CAS  Google Scholar 

  86. Menarini Group. Ranolazine in atrial fibrillation following an electricaL cardioversion (RAFFAELLO) [ClinicalTrials.gov identifier NCT01534962]. US National Institutes of Health, ClinicalTrials.gov (online). 2012. http://clinicaltrials.gov. Accessed 19 Nov 2012.

  87. Gilead Sciences. A study to evaluate the effect of ranolazine and dronedarone when given alone and in combination in patients with paroxysmal atrial fibrillation (HARMONY) [ClinicalTrials.gov identifier NCT01522651]. US National Institutes of Health, ClinicalTrials.gov (online). 2012. http://clinicaltrials.gov. Accessed 19 Nov 2012.

  88. Pelliccia F, Pasceri V, Marazzi G, et al. A pilot randomized study of ranolazine for reduction of myocardial damage during elective percutaneous coronary intervention. Am Heart J. 2012;163(6):1019–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure:

The preparation of this review was not supported by any external funding. During the peer review process, the manufacturer of the agent under review was offered an opportunity to comment on this article. Changes resulting from comments received were made by the author on the basis of scientific and editorial merit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian M. Keating.

Additional information

The manuscript was reviewed by: N. Fragakis, Third Cardiology Department, Hippokration Hospital, Aristotle University Medical School, Thessaloniki, Greece; V. Pasceri, Emodinamica, Ospedale San Filippo Neri, Rome, Italy; F. Pelliccia, Department of Heart and Great Vessels Attilio Reale, La Sapienza University, Rome, Italy; H. Purcell, Royal Brompton Hospital, Department of Cardiology, London, UK; S. Sossalla, Department of Cardiology & Pneumology, Georg-August-University, Göttingen, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keating, G.M. Ranolazine. Drugs 73, 55–73 (2013). https://doi.org/10.1007/s40265-012-0005-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-012-0005-z

Keywords

Navigation