Skip to main content
Log in

Plastic Deformation Modes in Mono- and Bimodal-Type Ultrafine-Grained Austenitic Stainless Steel

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

An attempt was made to track plastic tensile deformation modes operating in bulk ultrafine-grained austenitic stainless steel with mono- (maximum at ~0.6 μm) and bimodal-type (minimum at ~0.5 μm and maximum at ~1.65 μm) grain size distributions produced by cyclic thermal processing. Post tensile deformation electron backscatter diffraction studies were conducted to analyse the impact of grain size distribution on plastic deformation characteristics. The study revealed extensive strain localisation in the monomodal-type grain size distribution, leading to poor strain-hardening behaviour. On the other hand, the bimodal-type distribution disclosed a conventional dislocation-mediated deformation mechanism operating in the coarse grains, while it was restricted to initial small strains in ultrafine austenite grains. The subsequent deformation process in these ultrafine austenite grains was dictated by nucleation and autocatalytic growth of strain-induced α′-martensite. The observed martensitic transformation of ultrafine austenite grains in preference to coarse grains was attributed to activation of local ‘grain to grain’ interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Tomimura, S. Takaki, S. Tanimoto, Y. Tokunaga, Optimal chemical composition in Fe–Cr–Ni alloys for ultra grain refining by reversion from deformation induced martensite. ISIJ Int. 31, 721–727 (1991)

    Article  Google Scholar 

  2. K. Tomimura, S. Takaki, Y. Tokunaga, Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels. ISIJ Int. 31, 1431–1437 (1991)

    Article  Google Scholar 

  3. S. Takaki, K. Tomimura, S. Ueda, Effect of pre-cold-working on diffusional reversion of deformation induced martensite in metastable austenitic stainless steel. ISIJ Int. 34, 522–527 (1994)

    Article  Google Scholar 

  4. Y.Q. Ma, J.E. Jin, Y.K. Lee, A repetitive thermo-mechanical process to produce nano-crystalline in a metastable austenitic steel. Scripta Mater. 52, 1311–1315 (2005)

    Article  Google Scholar 

  5. J.E. Jin, Y.S. Jung, Y.K. Lee, Effect of grain size on the uniform ductility of a bulk ultrafine-grained alloy. Mater. Sci. Eng. A 449–451, 786–789 (2007)

    Article  Google Scholar 

  6. G.L. Huang, D.K. Matlock, G. Krauss, Martensite formation, strain rate sensitivity and deformation behaviour of type 304 stainless steel sheet. Metall. Trans. A 20A, 1239–1246 (1989)

    Article  Google Scholar 

  7. K. Nohara, Y. Ono, N. Ohashi, Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steel. J. Iron Steel Inst. Jpn. 63, 772–782 (1977)

    Google Scholar 

  8. H. Mirzadeh, A. Najafizadeh, Correlation between processing parameters and strain-induced martensitic transformation in cold worked AISI 301 stainless steel. Mater. Charact. 59, 1650–1654 (2008)

    Article  Google Scholar 

  9. Y.-S. Jung, Y.-K. Lee, D.K. Matlock, M.C. Mataya, Effect of grain size on strain-induced martensitic transformation start temperature in an ultrafine grained metastable austenitic stainless steel. Metall. Mater. Int. 17, 553–556 (2011)

    Article  Google Scholar 

  10. S.F. Peterson, M.C. Mataya, D.K. Matlock, The formability of austenitic stainless steels. J. Met. 49, 54–58 (1997)

    Google Scholar 

  11. B. Ravi Kumar, B. Mahato, S. Sharma, J.K. Sahu, Effect of cyclic thermal process on ultrafine grain formation in AISI 304l austenitic stainless steel. Metall. Mater. Trans. A 40A, 3226–3234 (2009)

  12. B. Ravi Kumar, S. Sharma, B. Mahato, Formation of ultrafine grained microstructure in the austenitic stainless steel and its impact on tensile properties. Mater. Sci. Eng. A 528, 2209–2216 (2011)

    Article  Google Scholar 

  13. C.-S. Yoo, Y.-M. Park, Y.-S. Jung, Y.-K. Lee, Effect of grain size on transformation-induced plasticity in an ultrafine-grained metastable austenitic stainless steel. Scripta Mater. 59, 71–74 (2008)

    Article  Google Scholar 

  14. D. Farkas, H. Van Swygenhoven, P.M. Derlet, Intergranular fracture in nanocrystalline metals. Phys. Rev. B 66, 060101-1–060101-4 (2002)

  15. Y.M. Wang, K. Wang, D. Pan, K. Lu, K.J. Hemker, E. Ma, Micro sample tensile testing of nanocrystalline copper. Scripta Mater. 48, 1581–1586 (2003)

    Article  Google Scholar 

  16. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Hortin, P. Wang, Deformation of electro-deposited nanocrystalline nickel. Acta Mater. 51, 387–405 (2003)

    Article  Google Scholar 

  17. Q.M. Wei, D. Jia, K.T. Ramesh, E. Ma, Evolution and microstructure of shear bands in nanostructured Fe. Appl. Phys. Lett. 81, 1240–1242 (2002)

    Article  Google Scholar 

  18. Y.M. Wang, E. Ma, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng. A 375–377, 46–52 (2004)

    Article  Google Scholar 

  19. Y.M. Wang, E. Ma, Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52, 1699–1709 (2004)

    Article  Google Scholar 

  20. E. Ma, Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. J. Met. 58, 49–53 (2006)

    Google Scholar 

  21. S. Berbenni, V. Favier, M. Berveiller, Impact of the grain size distribution on the yield stress of heterogeneous materials. Int. J. Plast. 23, 114–142 (2007)

    Article  Google Scholar 

  22. B. Raeisinia, C.W. Sinclair, W.J. Poole, C.N. Tome, On impact of grain size distribution on the plastic behaviour of polycrystalline metals. Model. Simul. Mater. Sci. Eng. 16, 1–15 (2008)

    Article  Google Scholar 

  23. K. Kako, E. Kawakami, J. Ohta, M. Mayuzumi, Effects of various alloying elements on tensile properties of high-purity Fe-18Cr-(14–16) Ni alloys at room temperature. Mater. Trans. 43, 155–162 (2002)

    Article  Google Scholar 

  24. S. Takaki, Y. Tokunaga, in Ultra Grain Refining in Metastable Austenitic Stainless Steel. Proc Innovation stainless steels, AIM, Florence (1993), pp. 327–332

  25. S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, A. Kyrolainen, Hall–Petch behavior in ultra-fine-grained AISI 301LN stainless steel. Metall. Mater. Trans. A 38A, 1202–1210 (2007)

    Article  Google Scholar 

  26. K.P. Staudhammer, L.E. Murr, S.S. Hecker, Nucleation and evolution of strain-induced martensitic (b.c.c.) embryos and substructure in stainless steel: a transmission electron microscope study. Acta Metall. 31, 267–274 (1983)

    Article  Google Scholar 

  27. S. Takaki, K. Kawasaki, Y. Kimura, Mechanical properties of ultra fine grained steels. J. Mater. Process. Technol. 117, 359–363 (2001)

    Article  Google Scholar 

  28. Y.K. Lee, J.E. Jin, Y.Q. Ma, Transformation-induced extraordinary ductility in an ultrafine-grained alloy with nanosized precipitates. Scripta Mater. 57, 707–710 (2007)

    Article  Google Scholar 

  29. P. Hedstrom, U. Lienert, J. Almer, M. Oden, Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel. Scripta Mater. 56, 213–216 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director of the National Metallurgical Laboratory for supporting this work. The authors also wish to record their gratitude to Ms. Sailaja Sharma, PhD scholar for her assistance during the experiments. This work was financially supported by the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ravi Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi Kumar, B., Gujral, A. Plastic Deformation Modes in Mono- and Bimodal-Type Ultrafine-Grained Austenitic Stainless Steel. Metallogr. Microstruct. Anal. 3, 397–407 (2014). https://doi.org/10.1007/s13632-014-0152-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-014-0152-6

Keywords

Navigation