Skip to main content
Log in

Hydroxyéthylamidons en réanimation

Hydroxyethyl starches in the intensive care unit

  • MISE AU POINT / UPDATE
  • Published:
Réanimation

Résumé

Peu de temps après leur mise sur le marché, les hydroxyéthylamidons (HEA) se sont imposés comme soluté de remplissage de référence dans beaucoup de pays dont la France. Leur origine naturelle et leur coût moindre que celui de l’albumine ont favorisé leur utilisation. Cependant, le bénéfice d’un remplissage par colloïde par rapport aux cristalloïdes n’a jamais été démontré en réanimation, et des effets secondaires sévères des HEA ont été rapidement décrits chez l’homme. L’évolution des caractéristiques des différentes générations d’HEA afin de réduire leur demivie intravasculaire en diminuant leur poids moléculaire et leur substitution n’a pas permis d’améliorer la tolérance de ces solutions. Plusieurs essais randomisés larges et plusieurs méta-analyses concluent à une toxicité rénale des HEA et même à une surmortalité chez les patients de réanimation, indépendantes des caractéristiques des HEA. Ces données récentes ont justifié la réévaluation du ratio bénéfice/risque des HEA par la Food and Drug Administration (FDA) et l’European Medicines Agency (EMA) dont les conclusions mentionnent que les HEA ne doivent plus être utilisés chez les patients de réanimation. Depuis la description des premières lésions rénales avec les HEA, 20 ans se seront écoulés avant d’interdire leur utilisation en réanimation. Cette mise au point fait la synthèse des données scientifiques sur le bénéfice-risque des HEA et discute les raisons qui ont abouti à un tel délai avant qu’une alerte sanitaire ne soit déclenchée. Il faut, en effet, arriver à tirer les leçons de cette expérience.

Abstract

Shortly after obtaining their market authorization, hydroxyethyl starches (HES) have emerged as the preferred fluid for resuscitation in many countries including France. Its natural origin and a lesser cost than that of albumin have promoted their large use. However, the benefit of colloids over crystalloids has never been demonstrated in the intensive care unit (ICU), and severe side-effects of HES have been rapidly described in humans. By reducing their molecular weight and substitution, the changing characteristics of the different HES generations shorted their intravascular half-life but did not improve the safety of the solutions. Several large randomized trials and meta-analyzes conclude on the renal toxicity of HES and even on a higher mortality in critically ill patients, independently of HES characteristics. These recent data have justified the reevaluation of the benefit-risk ratio of HES by the Food and Drug Administration and the European Medecines Agency. Their conclusions indicate that HES should not be used in critically ill patients. Since the first description of HES-related kidney damages, 20 years have been elapsed before prohibiting their use in the ICU. This literature review discusses the recently published evidences on the benefit-risk ratio of HES and the reasons that led to such a delay before health alert was triggered. We must learn from this experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Bayliss WM (1919) Intravenous injections of gum solution in cholera. Br Med J 2:450

    Article  PubMed Central  Google Scholar 

  2. Warren J, Stead E, Merrill A, et al (1944) Chemical, clinical, and immunological studies on the products of human plasma fraction. The treatment of shock with concentrated human serum albumin: a preliminary report. J Clin Invest 23:506–509

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. SRLF-SFAR (1997) Remplissage vasculaire au cours des hypovolémies vraies ou relatives. Réanimation-Urgences 6:333–341

    Google Scholar 

  4. Legendre C, Thervet E, Page B, et al (1993) Hydroxyethylstarch and osmotic-nephrosis-like lesions in kidney transplantation. Lancet 342:248–249

    Article  PubMed  CAS  Google Scholar 

  5. Cittanova ML, Leblanc I, Legendre C, et al (1996) Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet 348:1620–1622

    Article  PubMed  CAS  Google Scholar 

  6. Schortgen F, Lacherade JC, Bruneel F, et al (2001) Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357:911–916

    Article  PubMed  CAS  Google Scholar 

  7. Thompson WL, Fukushima T, Rutherford RB, et al (1970) Intravascular persistence, tissue storage, and excretion of hydroxyethyl starch. Surg Gynecol Obstet 131:965–972

    PubMed  CAS  Google Scholar 

  8. Rudowski W, Kostrzewska E (1976) Blood substitutes. Ann R Coll Surg Engl 58:115–125

    Google Scholar 

  9. Stander S, Bone HG, Machens HG, et al (2002) Hydroxyethyl starch does not cross the blood-brain or the placental barrier but the perineurium of peripheral nerves in infused animals. Cell Tissue Res 310:279–287

    Article  PubMed  CAS  Google Scholar 

  10. Auwerda JJ, Wilson JH, Sonneveld P (2002) Foamy macrophage syndrome due to hydroxyethyl starch replacement: a severe side effect in plasmapheresis. Ann Intern Med 137:1013–1014

    Article  PubMed  Google Scholar 

  11. Sirtl C, Laubenthal H, Zumtobel V, et al (1999) Tissue deposits of hydroxyethyl starch (HES): dose-dependent and time-related. Br J Anaesth 82:510–515

    Article  PubMed  CAS  Google Scholar 

  12. Christidis C, Mal F, Ramos J, et al (2001) Worsening of hepatic dysfunction as a consequence of repeated hydroxyethylstarch infusions. J Hepatol 35:726–732

    Article  PubMed  CAS  Google Scholar 

  13. Leuschner J, Opitz J, Winkler A, et al (2003) Tissue storage of 14C-labelled hydroxyethyl starch (HES) 130/0.4 and HES 200/0.5 after repeated intravenous administration to rats. Drugs R D 4:331–338

    Article  PubMed  CAS  Google Scholar 

  14. Parker NE, Porter JB, Williams HJ, et al (1982) Pruritus after administration of hetastarch. Br Med J (Clin Res Ed) 284:385–386

    Article  CAS  Google Scholar 

  15. Bork K (2005) Pruritus precipitated by hydroxyethyl starch: a review. Br J Dermatol 152:3–12

    Article  PubMed  CAS  Google Scholar 

  16. Stander S, Richter L, Osada N, et al (2013) Hydroxyethyl starchinduced pruritus: clinical characteristics and influence of dose, molecular weight and substitution. Acta Derm Venereol doi: 10.2340/00015555-1639. [Epub ahead of print]

    Google Scholar 

  17. Dickenmann M, Oettl T, Mihatsch MJ (2008) Osmotic nephrosis: acute kidney injury with accumulation of proximal tubular lysosomes due to administration of exogenous solutes. Am J Kidney Dis 51:491–503

    Article  PubMed  Google Scholar 

  18. Pillebout E, Nochy D, Hill G, et al (2005) Renal histopathological lesions after orthotopic liver transplantation (OLT). Am J Transplant 5:1120–1129

    Article  PubMed  Google Scholar 

  19. Hagne C, Schwarz A, Gaspert A, et al (2009) HAES in der Sepsis: ein Damoklesschwert? Schweiz Med Forum 9:304–306

    Google Scholar 

  20. Druml W, Polzleitner D, Laggner AN, et al (1988) Dextran-40, acute renal failure, and elevated plasma oncotic pressure. N Engl J Med 318:252–254

    Google Scholar 

  21. Kief H, Engelbart K, Arnold G, et al (1968) Vacuolar reabsorption of native and digested gelatin (so-called osmotic nephrosis). Virchows Arch B Cell Pathol 1:240–250

    PubMed  CAS  Google Scholar 

  22. Bhatt AP, Neppalli VT, Kelley EA, et al (2011) Dextran removal by plasmapheresis in a kidney-pancreas transplant recipient with dextran 40-induced osmotic nephrosis. Am J Kidney Dis 57:621–623

    Article  PubMed  Google Scholar 

  23. Schick MA, Isbary TJ, Schlegel N, et al (2009) The impact of crystalloid and colloid infusion on the kidney in rodent sepsis. Intensive Care Med 36:541–548

    Article  PubMed  Google Scholar 

  24. Economidou D, Kapoukranidou D, Dimitriadis C, et al (2011) Osmotic nephrosis due to the use of anti-adhesive membrane intraperitoneally. Nephro Dial Transplant 26:697–701

    Article  CAS  Google Scholar 

  25. Economidou D, Stavrinou E, Giamalis P, et al (2011) Acute kidney injury due to osmotic nephrosis following intraoperative placement of an intraperitoneal antiadhesive barrier. Am J Kidney Dis 57:304–307

    Article  PubMed  Google Scholar 

  26. Schortgen F, Girou E, Deye N, et al (2008) The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med 34:2157–2168

    Article  PubMed  Google Scholar 

  27. Schortgen F, Brochard L (2009) Colloid-induced kidney injury: experimental evidence may help to understand mechanisms. Crit Care 13:130

    Article  PubMed Central  PubMed  Google Scholar 

  28. Bayer O, Reinhart K, Kohl M, et al (2012) Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance and patient outcomes in patients with severe sepsis: a prospective sequential analysis. Crit Care Med 40:2543–2551

    Article  PubMed  CAS  Google Scholar 

  29. Reinhart K, Perner A, Sprung CL, et al (2012) Consensus statement of the ESICM task force on colloid volume therapy in critically ill patients. Intensive Care Med 38:368–383

    Article  PubMed  CAS  Google Scholar 

  30. Brunkhorst FM, Engel C, Bloos F, et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139

    Article  PubMed  CAS  Google Scholar 

  31. Perner A, Haase N, Guttormsen AB, et al (2012) Hydroxyethyl starch 130/0.4 versus Ringer’s acetate in severe sepsis. N Engl J Med 367:124–34

    Article  PubMed  CAS  Google Scholar 

  32. Myburgh JA, Finfer S, Bellomo R, et al (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 367:1901–1911

    Article  PubMed  CAS  Google Scholar 

  33. Brandt S, Regueira T, Bracht H, et al (2009) Effect of fluid resuscitation on mortality and organ function in experimental sepsis models. Crit Care 13:R186

    Article  PubMed Central  PubMed  Google Scholar 

  34. De Labarthe A, Jacobs F, Blot F, et al (2001) Acute renal failure secondary to hydroxyethylstarch administration in a surgical patient. Am J Med 111:417–418

    Article  PubMed  Google Scholar 

  35. Kumar AB, Suneja M (2012) Hetastarch-induced osmotic nephrosis. Anesthesiology 117:647

    Article  PubMed  Google Scholar 

  36. Ebcioglu Z, Cohen DJ, Crew RJ, et al (2006) Osmotic nephrosis in a renal transplant recipient. Kidney Int 70:1873–1876

    Article  PubMed  CAS  Google Scholar 

  37. Jungheinrich C, Scharpf R, Wargenau M, et al (2002) The pharmacokinetics and tolerability of an intravenous infusion of the new hydroxyethyl starch 130/0.4 (6%, 500 ml) in mild-to-severe renal impairment. Anesth Analg 95:544–551

    PubMed  CAS  Google Scholar 

  38. Westphal M, James MF, Kozek-Langenecker S, et al (2009) Hydroxyethyl starches: different products — different effects. Anesthesiology 111:187–202

    Article  PubMed  CAS  Google Scholar 

  39. Eisenbach C, Schonfeld AH, Vogt N, et al (2007) Pharmacodynamics and organ storage of hydroxyethyl starch in acute hemodilution in pigs: influence of molecular weightand degree of substitution. Intensive Care Med 33:1637–1644

    Article  PubMed  CAS  Google Scholar 

  40. Huter L, Simon TP, Weinmann L, et al (2009) Hydroxyethylstarch impairs renal function and induces interstitial proliferation, macrophage infiltration and tubular damage in an isolated renal perfusion model. Crit Care 13:R23

    Article  PubMed Central  PubMed  Google Scholar 

  41. Haynes GR (2006) Fluid management in cardiac surgery: is one hydroxyethyl starch solution safer than another? J Cardiothorac Vasc Anesth 20:916–917

    Article  PubMed  Google Scholar 

  42. Brochard L, Schortgen F, Brun-Buisson C, et al (2008) Pour un moratoire sur l’utilisation des hydroxyéthylamidons. Réanimation 17:588–591

    Article  Google Scholar 

  43. Zarychanski R, Turgeon AF, Fergusson DA, et al (2009) Renal outcomes following hydroxyethl starch resuscitation: a metaanalysis of randomized trials. Open Med 3:e196–e209

    PubMed Central  PubMed  Google Scholar 

  44. Guidet B, Martinet O, Boulain T, et al (2012) Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 versus 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care 16:R94

    Article  PubMed Central  PubMed  Google Scholar 

  45. http://www.fda.gov/downloads/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/NewDrugApplicationsNDAs/UCM220167.pdf?bcsi_scan_628cd39dca2568d2=T6nsJ1fMDaQ28ANjTXH30R75RAUCAAAAb36aCQ==&bcsi_scan_filename=UCM220167.pdf, accédé le 21/10/2013

  46. http://www.fda.gov/biologicsbloodvaccines/safetyavailability/ucm358271.htm, accédé le 19/10/2013

  47. Hartog CS, Reinhart K (2012) CRYSTMAS study adds to concerns about renal safety and increased mortality in sepsis patients. Crit Care 16:454

    Article  PubMed Central  PubMed  Google Scholar 

  48. Haase N, Wetterslev J, Winkel P, et al (2013) Bleeding and risk of death with hydroxyethyl starch in severe sepsis: post-hoc analyses of a randomized clinical trial. Intensive Care Med 39:2126–2134

    Article  PubMed  CAS  Google Scholar 

  49. Meybohm P, Van Aken H, De Gasperi A, et al (2013) Reevaluating currently available data and suggestions for planning randomised controlled studies regarding the use of hydroxyethylstarch in critically ill patients: a multidisciplinary statement. Crit Care 17:R166

    Article  PubMed  Google Scholar 

  50. Patel A, Waheed U, Brett SJ (2013) Randomised trials of 6% tetrastarch (hydroxyethyl starch 130/0.4 or 0.42) for severe sepsis reporting mortality: systematic review and meta-analysis. Intensive Care Med 39:811–822

    Article  PubMed  CAS  Google Scholar 

  51. Mutter TC, Ruth CA, Dart AB (2013) Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev 7:CD007594

    PubMed  Google Scholar 

  52. Haase N, Perner A, Hennings LI, et al (2013) Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. BMJ 346:f839

    Article  PubMed Central  PubMed  Google Scholar 

  53. Gattas DJ, Dan A, Myburgh J, et al (2013) Fluid resuscitation with 6% hydroxyethyl starch (130/0.4 and 130/0.42) in acutely ill patients: systematic review of effects on mortality and treatment with renal replacement therapy. Intensive Care Med 39:558–568

    Article  PubMed  CAS  Google Scholar 

  54. Zarychanski R, Abou-Setta AM, Turgeon AF, et al (2013) Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA 309:678–688

    Article  PubMed  CAS  Google Scholar 

  55. Perel P, Roberts I, Ker K (2013) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 2:CD000567

    Google Scholar 

  56. Annane D, Siami S, Jaber S, et al (2013) Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA 310:1809–1817

    Article  PubMed  CAS  Google Scholar 

  57. http://clinicaltrials.gov/archive/NCT00318942/2007_05_09/changes, accédé le 21/10/2013

  58. The SAFE Study Investigators (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256

    Article  Google Scholar 

  59. Nisula S, Kaukonen KM, Vaara ST, et al (2013) Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med 39:420–428

    Article  PubMed  Google Scholar 

  60. Rioux JP, Lessard M, De Bortoli B, et al (2009) Pentastarch 10% (250 kDa/0.45) is an independent risk factor of acute kidney injury following cardiac surgery. Crit Care Med 37:1293–1298

    Article  PubMed  CAS  Google Scholar 

  61. Winkelmayer WC, Glynn RJ, Levin R, et al (2003) Hydroxyethyl starch and change in renal function in patients undergoing coronary artery bypass graft surgery. Kidney Int 64:1046–1049

    Article  PubMed  Google Scholar 

  62. Muller RG, Haase N, Wetterslev J, et al (2013) Effects of hydroxyethyl starch in subgroups of patients with severe sepsis: exploratory post-hoc analyses of a randomised trial. Intensive Care Med 39:1963–1971

    Article  PubMed  CAS  Google Scholar 

  63. Bechir M, Puhan MA, Neff SB, et al (2010) Early fluid resuscitation with hyperoncotic hydroxyethyl starch 200/0.5 (10%) in severe burn injury. Crit Care 14:R123

    Article  PubMed Central  PubMed  Google Scholar 

  64. Hartog CS, Kohl M, Reinhart K (2011) A systematic review of third-generation hydroxyethyl starch (HES 130/0.4) in resuscitation: safety not adequately addressed. Anesth Analg 112:635–645

    Article  PubMed  CAS  Google Scholar 

  65. Wise J (2013) Boldt: the great pretender. BMJ 346:f1738

    Article  PubMed  Google Scholar 

  66. Antonelli M, Sandroni C (2013) Hydroxyethyl starch for intravenous volume replacement: more harm than benefit. JAMA 309:723–724

    Article  PubMed  CAS  Google Scholar 

  67. Finfer S, Liu B, Taylor C, et al (2010) Resuscitation fluid use in critically ill adults: an international cross-sectional study in 391 intensive care units. Crit Care 14:R185

    Article  PubMed Central  PubMed  Google Scholar 

  68. Hartog CS, Skupin H, Natanson C, et al (2012) Systematic analysis of hydroxyethyl starch (HES) reviews: proliferation of low-quality reviews overwhelms the results of well-performed meta-analyses. Intensive Care Med 38:1258–1271

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/Hydroxyethyl_starch-containing_solutions/human_referral_prac_000012.jsp&mid=WC0b01ac05805c516f accédé le 21/10/2013

  70. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Solutions_for_infusion_containing_hydroxyethyl_starch/Recommendation_provided_by_Pharmacovigilance_Risk_Assess ment_Committee/WC500144448.pdf, accédé le 21/10/2013

  71. Vincent JL, Kellum JA, Shaw A, et al (2013) Should hydroxyethyl starch solutions be totally banned? Crit Care 17:193

    Article  PubMed  Google Scholar 

  72. Chappell D, Jacob M (2013) Hydroxyethyl starch — the importance of being earnest. Scand J Trauma Resusc Emerg Med 21:61

    Article  PubMed Central  PubMed  Google Scholar 

  73. Godet G, Girard C, Guidet B, et al (2013) Hydroxyethylstarches and renal failure: to keep the reason is a necessity. Ann Fr Anesth Reanim 32:535–538

    Article  PubMed  CAS  Google Scholar 

  74. http://www.mhra.gov.uk/Safetyinformation/DrugSafetyUpdate/CON286974, accédé le 21/10/2013

  75. Bion J, Bellomo R, Myburgh J, et al (2013) Hydroxyethyl starch: putting patient safety first. Intensive Care Med [Epub ahead of print]

    Google Scholar 

  76. http://ansm.sante.fr/S-informer/Actualite/Medicaments-contenantle-facteur-VIII-octocog-alpha-medicaments-contenant-de-l-hydroxyethylamidon-medicaments-contenant-du-valproate-les-contraceptifshormonaux-combines-cabazitaxel-Jevatana-Retour-d-informationsur-le-PRAC, accédé le 19/10/2013

  77. http://www.bbc.co.uk/programmes/b038hfr4 accédé le 19/10/2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Schortgen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schortgen, F. Hydroxyéthylamidons en réanimation. Réanimation 23, 159–166 (2014). https://doi.org/10.1007/s13546-014-0855-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-014-0855-3

Mots clés

Keywords

Navigation