Skip to main content
Log in

Maxwell Field with Torsion

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We propose a gauge-invariant model of propagating torsion which couples to the Maxwell field and to charged particles. As a result, we have an Abelian gauge-invariant action leading to a theory with nonzero torsion consistent with available experimental data, which can be used to establish a lower bound for our new coupling parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.L. Shapiro, Phys. Rep. 357(2), 113 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. V. De Sabbata, M. Gasperini, Phy. Lett. A. 77(5), 300 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. F.W. Hehl, P. von der Heyde, G.D. Kerlick, Rev. Mod. Phys. 48(3), 393 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Novello, Phys. Lett. A. 59(2), 105 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Hojman, M. Rosenbaum, M. Ryan, L. Shepley, Phys. Rev. D. 17(12), 3141 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Hojman, M. Rosenbaum, M. Ryan, Phys. Rev. D. 19(2), 430 (1979)

    Article  ADS  Google Scholar 

  7. C. Mukku, W.A. Sayed, Phys. Lett. B. 82(3-4), 382 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Saa, Mod. Phys. Lett. A. 09(11), 971 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Saa, Gen. Relat. Gravit. 29(2), 205 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. N.J. Poplawski, J. Math. Phys. 47(11), 112504 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. R.A. Mosna, A. Saa, J. Math. Phys. 46(11), 112502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. W. Ni, Phys. Rev. D. 19(8), 2260 (1979)

    Article  ADS  Google Scholar 

  13. T. Boyadjiev, P. Fiziev, S. Yazadjiev, Class. Quantum Grav. 16(7), 2359 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. P. Fiziev, S. Yazadjiev, Mod. Phys. Lett. A. 14(07), 511 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  15. P.C. West. Introduction to Supersymmetry and Supergravity (World Scientific, Singapore, 1990)

    Book  MATH  Google Scholar 

  16. J. Bekenstein, Phys. Rev. D. 25(6), 1527 (1982)

    Article  ADS  Google Scholar 

  17. A.M. Nobili, D.M. Lucchesi, M.T. Crosta, M. Shao, S.G. Turyshev, R. Peron, G. Catastini, A. Anselmi, G. Zavattini, Am. J. Phys. 81(7), 527 (2013)

    Article  ADS  Google Scholar 

  18. M. Gasperini, Gen. Relat. Gravit. 16(11), 1031 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  19. F.W. Hehl, Y.N. Obukhov, How Does the Electromagnetic Field Couple to Gravity, in Particular to Metric, Nonmetricity, Torsion, and Curvature? in Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space. Lecture Notes in Physics Volume 562 (Springer, Berlin, 2001), pp. 479–504

  20. M.C. Baldiotti, W.S. Elias, C. Molina, T.S. Pereira, Phys. Rev. D. 90(10), 104025 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank A. Saa, J.A. Helayël-Neto, and I. Shapiro for insightful remarks and useful comments. TSP thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fresneda.

Additional information

R. Fresneda holds a degree of PhD, Federal University of ABC (UFABC).

Appendices

Appendix A: Semi-Minimal Coupling

In the following, we consider the general gauge transformation and modified Maxwell field tensor given by (6) and (11), respectively. For arbitrary α, we show that a minimal coupling on the level of differential forms can be achieved which circumvents issues related to restrictions on the connection coefficients and the failure of MCP when applied to the homogeneous equations encountered in [8].

The Maxwell field tensor (11) can be written invariantly in terms of the differential two-form

$$F=dA-\alpha T\wedge A, $$

where A=A μ d x μ and T=T μ d x μ are the vector potential and torsion trace one-forms. Consider the map Dp→Λp+1 defined in the space of p-forms ω such that

$$D\omega=d\omega-\alpha T\wedge\omega. $$

We note that D is not a graded derivation, i.e., one does not have D(ω p ω q )=D ω p ω q +(−1)p ω p D ω q , where ω p is a p -form and ω q is a q-form.

One can show that for an arbitrary p-form ω

$$D^{2}\omega=0 $$

since T is exact, T=d φ. From the nilpotency of the map D, it follows that

$$DF\equiv0, $$

which is the analog of the homogeneous Maxwell equations d f≡0, where f=d A. The homogeneous equations in a local coordinate map are

$$\left(\partial_{\mu}-\alpha T_{\mu}\right)F_{\nu\sigma}+\left(\partial_{\sigma}-\alpha T_{\sigma}\right)F_{\mu\nu}+\left(\partial_{\nu}-\alpha T_{\nu}\right)F_{\sigma\mu}\equiv0. $$

Thus, the homogeneous equations are identically zero, and no restriction on either F or T arise.

The analog of the nonhomogeneous Maxwell equations without sources, ∗df=0 is

$$\ast D\ast F=\left(-\bar{\nabla}_{\mu}F^{\mu\nu}+\alpha T_{\mu}F^{\mu\nu}\right)dx_{\nu}=0~, $$

which coincides with the equations of motion (12).

We have thus shown that the semi-minimal coupling given by the substitution of the de-Rahm exterior product d by the map D provides the Maxwell equations coupled to the trace part of the torsion tensor:

$$\begin{array}{@{}rcl@{}} f=dA&\rightarrow& F=DA,\\ df\equiv0&\rightarrow& DF\equiv0,\\ \ast d\ast f=0&\rightarrow&\ast D\ast F=0. \end{array} $$

Appendix B: Maxwell Equations with Sources

In this section, we apply the formalism presented in the previous section in order to calculate conserved currents.

Let us introduce the current density three-form

$$j=\frac{1}{3!}j^{\mu}\varepsilon_{\mu\nu\kappa\sigma}dx^{\nu}\wedge dx^{\kappa}\wedge dx^{\sigma}, $$

such that the inhomogeneous Maxwell equations become

$$ D\ast F=j. $$
(B1)

Since D 2=0, one has the condition D j=0 to ensure consistency of the Maxwell equations, which in a local chart reads

$$ \left(\bar{\nabla}_{\mu}-\alpha T_{\mu}\right)j^{\mu}=0. $$
(B2)

The interaction term in the action is gauge-invariant provided the current satisfies the conservation (B2):

$$\delta_{\epsilon}\int d^{4}x\sqrt{-g}j^{\mu}A_{\mu}=-\frac{1}{\alpha}\int d^{4}x\sqrt{-g}\left(\bar{\nabla}_{\mu}-\alpha T_{\mu}\right)j^{\mu}~. $$

Now, consider the three-form τ T =i T F, where i T is the interior derivative along the vector field T, which in coordinates is given by

$$\tau_{T}=\frac{\alpha}{3!}\left(T_{\mu}f_{\nu\sigma}+T_{\sigma}f_{\mu \nu}+T_{\nu}f_{\sigma\mu}\right)~ dx^{\mu}\wedge dx^{\nu}\wedge dx^{\sigma}~. $$

This three-form is covariantly conserved:

$$D\tau_{T}=d\tau_{T}-\alpha T\wedge\tau_{T}\equiv0~, $$

which is consistent with D F≡0. Since Tτ T vanishes, it follows that τ T is a closed form,

$$ d\tau_{T}=0. $$
(B3)

Thus, one can construct a conserved quantity, the gauge invariant one-form j T =∗τ T , which has the local expression

$$j_{T\mu}=-\frac{\alpha}{2}\varepsilon_{\mu\nu\rho\kappa}T^{\nu}F^{\rho \kappa}\equiv-\frac{\alpha}{2}\varepsilon_{\mu\nu\rho\kappa}T^{\nu}f^{\rho \kappa}~. $$

Following (B3), one has dj T =0:

$$\partial_{\mu}j_{T}^{\mu}\equiv\nabla_{\mu}j_{T}^{\mu}\equiv0~. $$

Thus, if Σ is space-like hypersurface, one has the conserved quantity

$$Q=\alpha{\int}_{\Sigma}d^{3}x\sqrt{\tilde{g}}\mathbf{T}\cdot\mathbf{B}~, $$

where \(\tilde {g}_{\mu \nu }\) is the induced metric on Σ, and T and B are torsion and magnetic field vectors. One can show that the total charge Q is a boundary term and vanishes at infinity in case the fields have vanishing boundary values at infinity, as in the case of propagating torsion theory. From j T , one can construct a dual torsionic source for electromagnetism, called “electric current” in [5], j E =i T F, which in coordinates reads \(j_{E}^{\mu }=-\alpha F^{\mu \nu }T_{\nu }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fresneda, R., Baldiotti, M.C. & Pereira, T.S. Maxwell Field with Torsion. Braz J Phys 45, 353–358 (2015). https://doi.org/10.1007/s13538-015-0318-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0318-y

Keywords

Navigation