Skip to main content

Advertisement

Log in

Aerosol delivery of lentivirus-mediated O-glycosylation mutant osteopontin suppresses lung tumorigenesis in K-ras LA1 mice

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Osteopontin (OPN) is a secreted glycophosphoprotein that has been implicated in the regulation of cancer development. The function of OPN is primarily regulated through post-translational modification such as glycosylation. As yet, however, the relationship between OPN glycosylation and lung cancer development has not been investigated. In this study, we addressed this issue by studying the effect of a triple mutant (TM) of OPN, which is mutated at three O-glycosylation sites, on lung cancer development in K-ras LA1 mice, a murine model for human non-small cell lung cancer.

Methods

Aerosolized lentivirus-based OPN TM was delivered into the lungs of K-ras LA1 mice using a nose-only-inhalation chamber 3 times/wk for 4 wks. Subsequently, the effects of repeated delivery of OPN TM on lung tumorigenesis and its concomitant OPN-mediated signaling pathways were investigated.

Results

Aerosol-delivered OPN TM inhibited lung tumorigenesis. In addition, the OPN-mediated Akt signaling pathway was inhibited. OPN TM also decreased NF-κB activity and the phosphorylation of 4E-BP1, while facilitating apoptosis in the lungs of K-ras LA1 mice.

Conclusions

Our results show that aerosol delivery of OPN TM successfully suppresses lung cancer development in the K-ras LA1 mouse model and, therefore, warrant its further investigation as a possible therapeutic strategy for non-small cell lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Jemal, R. Siegel, J.Q. Xu, E. Ward, Cancer Statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010)

    Article  PubMed  Google Scholar 

  2. R. Govindan, J. Subramanian, D. Morgensztern, B. Goodgame, M.Q. Baggstrom, F. Gao, J. Piccirillo, Distinctive characteristics of Non-small Cell Lung Cancer (NSCLC) in the young a Surveillance, Epidemiology, and End Results (SEER) analysis. J. Thorac. Oncol. 5, 23–28 (2010)

    Article  PubMed  Google Scholar 

  3. C. Gridelli, P. Maione, A. Rossi, The potential role of mTOR inhibitors in non-small cell lung cancer. Oncologist 13, 139–147 (2008)

    Article  PubMed  CAS  Google Scholar 

  4. S.V. Fulzele, A. Chatterjee, M.S. Shaik, T. Jackson, M. Singh, Inhalation delivery and anti-tumor activity of celecoxib in human orthotopic non-small cell lung cancer xenograft model. Pharm. Res. 23, 2094–2106 (2006)

    Article  PubMed  CAS  Google Scholar 

  5. M. Kohlhaufl, K. Haussinger, F. Stanzel, A. Markus, J. Tritschler, A. Muhlhofer, A. Morresi-Hauf, I. Golly, G. Scheuch, B.H. Jany, H.K. Biesalski, Inhalation of aerosolized vitamin A: reversibility of metaplasia and dysplasia of human respiratory epithelia—a prospective pilot study. Eur. J. Med. Res. 7, 72–78 (2002)

    PubMed  CAS  Google Scholar 

  6. L.V. Sequist, D.W. Bell, T.J. Lynch, D.A. Haber, Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J. Clin. Oncol. 25, 587–595 (2007)

    Google Scholar 

  7. T.J. Lynch, D.W. Bell, R. Sordella, Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004)

    Article  PubMed  CAS  Google Scholar 

  8. A. Gautam, C.L. Densmore, B. Xu, J.C. Waldrep, Enhanced gene expression in mouse lung after PEI-DNA aerosol delivery. Mol. Ther. 2, 63–70 (2000)

    Article  PubMed  CAS  Google Scholar 

  9. D.E. Zamora-Avila, P. Zapata-Benavides, M.A. Franco-Molina, S. Saavedra-Alonso, L.M. Trejo-Avila, D. Resendez-Perez, J.L. Mendez-Vazquez, J. Isaias-Badillo, C. Rodriguez-Padilla, WT1 gene silencing by aerosol delivery of PEI-RNAi complexes inhibits B16-F10 lung metastases growth. Cancer Gene Ther. 16, 892–899 (2009)

    Article  PubMed  CAS  Google Scholar 

  10. A.M. Tehrani, S.K. Hwang, T.H. Kim, C.S. Cho, J. Hua, W.S. Nah, J.T. Kwon, J.S. Kim, S.H. Chang, K.N. Yu, S.J. Park, D.R. Bhandari, K.H. Lee, G.H. An, G.R. Beck, M.H. Cho, Aerosol delivery of Akt controls protein translation in the lungs of dual luciferase reporter mice. Gene Ther. 14, 451–458 (2007)

    Article  PubMed  CAS  Google Scholar 

  11. S.K. Hwang, J.T. Kwon, S.J. Park, S.H. Chang, E.S. Lee, Y.S. Chung, G.R. Beck, K.H. Lee, L. Piao, J. Park, M.H. Cho, Lentivirus-mediated carboxyl-terminal modulator protein gene transfection via aerosol in lungs of K-ras null mice. Gene Ther. 14, 1721–1730 (2007)

    Article  PubMed  CAS  Google Scholar 

  12. D.C. Look, S.L. Brody, Engineering viral vectors to subvert the airway defense response. Am. J. Respir. Cell Mol. Biol. 20, 1103–1106 (1999)

    PubMed  CAS  Google Scholar 

  13. H. Bueler, Adeno associated viral vectors for gene transfer and gene therapy. Biol. Chem. 380, 613–622 (1999)

    Article  PubMed  CAS  Google Scholar 

  14. E. Abordo-Adesida, A. Follenzi, C. Barcia, S. Sciascia, M.G. Castro, L. Naldini, P.R. Lowenstein, Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Hum. Gene Ther. 16, 741–751 (2005)

    Article  PubMed  CAS  Google Scholar 

  15. D.S. Anson, The use of retroviral vectors for gene therapy-what are the risks? A review of retroviral pathogenesis and its relevance to retroviral vector-mediated gene delivery. Genet. Vaccines Ther. 2, 9 (2004)

    Article  PubMed  Google Scholar 

  16. Y. Hu, D. Stout, L. Wu, A dual-targeted lentiviral vector homing in on prostate bone metastases. Mol. Ther. 15, 1906–1908 (2007)

    Article  PubMed  CAS  Google Scholar 

  17. K.N. Yu, A. Minai-Tehrani, S.H. Chang, S.K. Hwang, S.H. Hong, J.E. Kim, J.Y. Shin, S.J. Park, J.H. Kim, J.T. Kwon, H.L. Jiang, B. Kang, D. Kim, C.H. Chae, K.H. Lee, T.J. Yoon, G.R. Beck, M.H. Cho, Aerosol delivery of small hairpin osteopontin blocks pulmonary metastasis of breast cancer in mice. PLoS One 5, e15623 (2010)

    Article  PubMed  CAS  Google Scholar 

  18. S.R. Rittling, A.F. Chambers, Role of osteopontin in tumour progression. Br. J. Cancer 90, 1877–1881 (2004)

    Article  PubMed  CAS  Google Scholar 

  19. P.Y. Wai, P.C. Kuo, Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev. 27, 103–118 (2008)

    Article  PubMed  CAS  Google Scholar 

  20. N.S. Fedarko, A. Jain, A. Karadag, M.R. Van Eman, L.W. Fisher, Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin. Cancer Res. 7, 4060–4066 (2001)

    PubMed  CAS  Google Scholar 

  21. G.F. Weber, G.S. Lett, N.C. Haubein, Osteopontin is a marker for cancer aggressiveness and patient survival. Br. J. Cancer 103, 861–869 (2010)

    Article  PubMed  CAS  Google Scholar 

  22. B. Christensen, C.C. Kazanecki, T.E. Petersen, S.R. Rittling, D.T. Denhardt, E.S. Sorensen, Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. J. Biol. Chem. 282, 19463–19472 (2007)

    Article  PubMed  CAS  Google Scholar 

  23. M.A. Chellaiah, R.S. Biswas, S.R. Rittling, D.T. Denhardt, K.A. Hruska, Rho-dependent Rho kinase activation increases CD44 surface expression and bone resorption in osteoclasts. J. Biol. Chem. 278, 29086–29097 (2003)

    Article  PubMed  CAS  Google Scholar 

  24. A. Lopez-Ferrer, C. Barranco, C. de Bolos, Differences in the O-glycosylation patterns between lung squamous cell carcinoma and adenocarcinoma. Am. J. Clin. Pathol. 118, 749–755 (2002)

    Article  PubMed  CAS  Google Scholar 

  25. Y. Zhao, Y. Wang, W.G. Zhu, Applications of post-translational modifications of FoxO family proteins in biological functions. J. Mol. Cell Biol. 3, 276–282 (2011)

    Article  PubMed  CAS  Google Scholar 

  26. H.E. Miwa, T.A. Gerken, O. Jamison, L.A. Tabak, Isoform-specific O-glycosylation of osteopontin and bone sialoprotein by polypeptide N-acetylgalactosaminyltransferase-1. J. Biol. Chem. 285, 1208–1219 (2010)

    Article  PubMed  CAS  Google Scholar 

  27. H.Y. Lee, Y.A. Sub, J.I. Lee, K.A. Hassan, L. Mao, T. Force, B.E. Gilbert, T. Jacks, J.A. Kurie, Inhibition of oncogenic K-ras signaling by aerosolized gene delivery in a mouse model of human lung cancer. Clin. Cancer Res. 8, 2970–2975 (2002)

    PubMed  CAS  Google Scholar 

  28. N.E. Mills, C.L. Fishman, W.N. Rom, N. Dubin, D.R. Jacobson, Increased prevalence of K-ras oncogene mutations in lung adenocarcinoma. Cancer Res. 55, 1444–1447 (1995)

    PubMed  CAS  Google Scholar 

  29. J. Zhang, F. Takahashi, K. Shimizu, F. Ohshita, Y. Kameda, K. Maeda, K. Nishio, Y. Fukuchi, K. Takahashi, Differential osteopontin expression in lung cancer. Cancer Lett. 171, 215–222 (2001)

    Article  PubMed  CAS  Google Scholar 

  30. T. Jacks, L. Johnson, K. Mercer, D. Greenbaum, R.T. Bronson, D. Crowley, D.A. Tuveson, Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001)

    Article  PubMed  Google Scholar 

  31. S.H. Chang, S.H. Hong, H.L. Jiang, A. Minai-Tehrani, K.N. Yu, J.H. Lee, J.E. Kim, J.Y. Shin, B. Kang, S. Park, K. Han, C.C. Chae, M.H. Cho, GOLGA2/GM130, cis-Golgi matrix protein, is a novel target of anticancer gene therapy. Mol. Ther. (2012). doi:10.1038/mt.2012.125

  32. B.W. Robertson, L. Bonsal, M.A. Chellaiah, Regulation of Erk1/2 activation by osteopontin in PC3 human prostate cancer cells. Mol. Cancer 9, 260 (2010)

    Article  PubMed  Google Scholar 

  33. V. Donati, L. Boldrini, M. Dell’Omodarme, M.C. Prati, P. Faviana, T. Camacci, M. Lucchi, A. Mussi, M. Santoro, F. Basolo, G. Fontanini, Osteopontin expression and prognostic significance in non-small cell lung cancer. Clin. Cancer Res. 11, 6459–6465 (2005)

    Article  PubMed  CAS  Google Scholar 

  34. M.A. Bjornsti, P.J. Houghton, The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer 4, 335–348 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. A.C. Gingras, S.P. Gygi, B. Raught, R.D. Polakiewicz, R.T. Abraham, M.F. Hoekstra, R. Aebersold, N. Sonenberg, Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13, 1422–1437 (1999)

    Article  PubMed  CAS  Google Scholar 

  36. M.A. Lawlor, D.R. Alessi, PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J. Cell Sci. 114, 2903–2910 (2001)

    PubMed  CAS  Google Scholar 

  37. M.M. Chaturvedi, B. Sung, V.R. Yadav, R. Kannappan, B.B. Aggarwal, NF-kappa B addiction and its role in cancer: ‘one size does not fit all’. Oncogene 30, 1615–1630 (2011)

    Article  PubMed  CAS  Google Scholar 

  38. J. Folkman, Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002)

    PubMed  CAS  Google Scholar 

  39. R. Cui, F. Takahashi, R. Ohashi, T. Gu, M. Yoshioka, K. Nishio, Y. Ohe, S. Tominaga, Y. Takagi, S. Sasaki, Y. Fukuchi, K. Takahashi, Abrogation of the interaction between osteopontin and alpha v beta 3 integrin reduces tumor growth of human lung cancer cells in mice. Lung Cancer 57, 302–310 (2007)

    Article  PubMed  Google Scholar 

  40. G. Chakraborty, S. Jain, G.C. Kundu, Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res. 68, 152–161 (2008)

    Article  PubMed  CAS  Google Scholar 

  41. D. Courter, H.B. Cao, S. Kwok, C. Kong, A. Banh, P.W. Kuo, D.M. Bouley, C. Vice, O.T. Brustugun, N.C. Denko, A.C. Koong, A. Giaccia, Q.T. Le, The RGD domain of human osteopontin promotes tumor growth and metastasis through activation of survival pathways. PLoS One 5, e9633 (2010)

    Article  PubMed  Google Scholar 

  42. V.T. Chang, M. Crispin, A.R. Aricescu, D.J. Harvey, J.E. Nettleship, J.A. Fennelly, C. Yu, K.S. Boles, E.J. Evans, D.I. Stuart, R.A. Dwek, E.Y. Jones, S.J. Davis, R.J. Owens, Glycoprotein structural genomics: solving the glycosylation problem. Structure 15, 267–273 (2007)

    Article  PubMed  CAS  Google Scholar 

  43. G. Patsos, C. Robbe-Masselot, A. Klein, V. Hebbe-Viton, R.S. Martin, D. Masselot, M. Graessmann, C. Paraskeva, T. Gallagher, A. Corfield, O-glycan regulation of apoptosis and proliferation in colorectal cancer cell lines. Biochem. Soc. Trans. 35, 1372–1374 (2007)

    Article  PubMed  CAS  Google Scholar 

  44. A. Varki, Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446, 1023–1029 (2007)

    Article  PubMed  CAS  Google Scholar 

  45. F.A. Saad, E. Salih, M.J. Glimcher, Identification of osteopontin phosphorylation sites involved in bone remodeling and inhibition of pathological calcification. J. Cell. Biochem. 103, 852–856 (2008)

    Article  PubMed  CAS  Google Scholar 

  46. L.A. Tabak, K.G. Ten Hagen, D. Tetaert, F.K. Hagen, C. Richet, T.M. Beres, J. Gagnon, M.M. Balys, B. VanWuyckhuyse, G.S. Bedi, P. Degand, Characterization of a UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase that displays glycopeptide N-acetylgalactosaminyltransferase activity. J. Biol. Chem. 274, 27867–27874 (1999)

    Article  PubMed  Google Scholar 

  47. T.A. Gerken, C.L. Perrine, A. Ganguli, P. Wu, C.R. Bertozzi, T.A. Fritz, J. Raman, L.A. Tabak, Glycopeptide-preferring polypeptide GalNAc transferase 10 (ppGalNAc T10), involved in mucin-type O-Glycosylation, has a unique GalNAc-O-Ser/Thr-binding site in its catalytic domain not found in ppGalNAc T1 or T2. J. Biol. Chem. 284, 20387–20397 (2009)

    Article  PubMed  Google Scholar 

  48. K.J. Yarema, M.F. Murrell, A. Levchenko, The systems biology of glycosylation. ChemBioChem 5, 1334–1347 (2004)

    Article  PubMed  Google Scholar 

  49. D. Halter, S. Neumann, S.M. van Dijk, J. Wolthoorn, A.M. De Maziere, O.V. Vieira, P. Mattjus, J. Klumperman, G. van Meer, H. Sprong, Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J. Cell Biol. 179, 101–115 (2007)

    Article  PubMed  CAS  Google Scholar 

  50. I. Martinez-Duncker, R. Mollicone, P. Codogno, R. Oriol, The nucleotide-sugar transporter family: a phylogenetic approach. Biochimie 85, 245–260 (2003)

    Article  PubMed  CAS  Google Scholar 

  51. J.M. Schulz, K.L. Ross, K. Malmstrom, M. Krieger, J.L. Fridovich-Keil, Mediators of galactose sensitivity in UDP-galactose 4′-epimerase-impaired mammalian cells. J. Biol. Chem. 280, 13493–13502 (2005)

    Article  PubMed  CAS  Google Scholar 

  52. H.J. Gabius, S. Andre, H. Kaltner, H.C. Siebert, The sugar code: functional lectinomics. Biochim. Biophys. Acta 1572, 165–177 (2002)

    Article  PubMed  CAS  Google Scholar 

  53. M. Mann, O.N. Jensen, Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003)

    Article  PubMed  CAS  Google Scholar 

  54. C.C. Kazanecki, D.J. Uzwiak, D.T. Denhardt, Control of osteopontin signaling and function by post-translational phosphorylation and protein folding. J. Cell. Biochem. 102, 912–924 (2007)

    Article  PubMed  CAS  Google Scholar 

  55. I. Han, J.E. Kudlow, Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol. Cell. Biol. 17, 2550–2558 (1997)

    PubMed  CAS  Google Scholar 

  56. Y.H. Lin, H.F. Yang-Yen, The osteopontin-CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. J. Biol. Chem. 276, 46024–46030 (2001)

    Article  PubMed  CAS  Google Scholar 

  57. S.P. Jackson, R. Tjian, O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 55, 125–133 (1988)

    Article  PubMed  CAS  Google Scholar 

  58. A. Gasbarri, F. Del Prete, L. Girnita, M.P. Martegani, P.G. Natali, A. Bartolazzi, CD44s adhesive function spontaneous and PMA-inducible CD44 cleavage are regulated at post-translational level in cells of melanocytic lineage. Melanoma Res. 13, 325–337 (2003)

    Article  PubMed  CAS  Google Scholar 

  59. R.J. Sola, K. Griebenow, Effects of glycosylation on the stability of protein pharmaceuticals. J. Pharm. Sci. 98, 1223–1245 (2009)

    Article  PubMed  CAS  Google Scholar 

  60. A.G. Bader, P.K. Vogt, An essential role for protein synthesis in oncogenic cellular transformation. Oncogene 23, 3145–3150 (2004)

    Article  PubMed  CAS  Google Scholar 

  61. M. Gromeier, C. Kaiser, E.Y. Dobrikova, S.S. Bradrick, M. Shveygert, J.T. Herbert, Activation of cap-independent translation by variant eukaryotic initiation factor 4G in vivo. RNA 14, 2170–2182 (2008)

    Article  PubMed  Google Scholar 

  62. A. Iacoangeli, Y. Lin, E.J. Morley, I.A. Muslimov, R. Bianchi, J. Reilly, J. Weedon, R. Diallo, W. Bocker, H. Tiedge, BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis 25, 2125–2133 (2004)

    Article  PubMed  CAS  Google Scholar 

  63. D.R. Gallie, K.S. Browning, eIF4G functionally differs from eIFiso4G in promoting internal initiation, cap-independent translation, and translation of structured mRNAs. J. Biol. Chem. 276, 36951–36960 (2001)

    Article  PubMed  CAS  Google Scholar 

  64. W.C. Merrick, Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332, 1–11 (2004)

    Article  PubMed  CAS  Google Scholar 

  65. R. Zohar, B.Q. Zhu, P. Liu, J. Sodek, C.A. McCulloch, Increased cell death in osteopontin-deficient cardiac fibroblasts occurs by a caspase-3-independent pathway. Am. J. Physiol. Heart Circ. Physiol. 287, H1730–H1739 (2004)

    Article  PubMed  CAS  Google Scholar 

  66. A.P.B. Da Silva, A. Pollett, S.R. Rittling, D.T. Denhardt, J. Sodek, R. Zohar, Exacerbated tissue destruction in DSS-induced acute colitis of OPN-null mice is associated with downregulation of TNF-alpha expression and non-programmed cell death. J. Cell. Physiol. 208, 629–639 (2006)

    Article  PubMed  Google Scholar 

  67. K.X. Fan, J.X. Dai, H. Wang, H.F. Wei, Z.G. Cao, S. Hou, W.Z. Qian, H.Q. Wang, B. Li, J. Zhao, H.J. Xu, C.D. Yang, Y. Guo, Treatment of collagen-induced arthritis with an anti-osteopontin monoclonal antibody through promotion of apoptosis of both murine and human activated T cells. Arthritis Rheum. 58, 2041–2052 (2008)

    Article  PubMed  CAS  Google Scholar 

  68. Y.J. Guo, J. Zhao, L. Dong, B. Liu, G.B. Wu, D.M. Xu, J.J. Chen, K. Li, X. Tong, J.X. Dai, S. Yao, M.C. Wu, Down-regulation of osteopontin suppresses growth and metastasis of hepatocellular carcinoma via induction of apoptosis. Gastroenterology 135, 956–968 (2008)

    Article  PubMed  Google Scholar 

  69. M. Karin, Nuclear factor-kappa B in cancer development and progression. Nature 441, 431–436 (2006)

    Article  PubMed  CAS  Google Scholar 

  70. C. Nakanishi, M. Toi, Nuclear factor-kappa B inhibitors as sensitizers to anticancer drugs. Nat. Rev. Cancer 5, 297–309 (2005)

    Article  PubMed  CAS  Google Scholar 

  71. E. Dundar, U. Oner, B.C. Peker, M. Metintas, S. Isiksoy, G. Ak, The significance and relationship between mast cells and tumour angiogenesis in non-small cell lung carcinoma. J. Int. Med. Res. 36, 88–95 (2008)

    PubMed  CAS  Google Scholar 

  72. S. Vidal, K. Kovacs, D. Bell, E. Horvath, B.W. Scheithauer, R.V. Lloyd, Cyclooxygenase-2 expression in human pituitary tumors. Cancer 97, 2814–2821 (2003)

    Article  PubMed  CAS  Google Scholar 

  73. A.B. Sandler, S.M. Dubinett, COX-2 inhibition and lung cancer. Semin. Oncol. 31, 45–52 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2012-0000102) and partially supported by the Research Institute for Veterinary Science, Seoul National University. MHC acknowledges the support from the Veterinary Research Institute of Seoul National University, Korea.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Haing Cho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 1921 kb)

ESM Table 1

(DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minai-Tehrani, A., Chang, SH., Kwon, JT. et al. Aerosol delivery of lentivirus-mediated O-glycosylation mutant osteopontin suppresses lung tumorigenesis in K-ras LA1 mice. Cell Oncol. 36, 15–26 (2013). https://doi.org/10.1007/s13402-012-0107-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-012-0107-3

Keywords

Navigation