Skip to main content

Advertisement

Log in

Redox Flow Battery for Energy Storage

  • Review Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The redox flow battery has undergone widespread research since the early 1970s. Several different redox couples have been investigated and reported in the literature. Only three systems as such have seen some commercial development, namely the all-vanadium (by VRB-ESS), the bromine–polysulfide (RGN-ESS) and the zinc–bromine (Powercell) systems. The vanadium–bromine system may be an attractive replacement for the all-vanadium system due to its higher energy density with possible applications as energy storage systems for electric vehicles. Other redox flow battery systems have faced problems due to slow electrochemical kinetics of redox couples, membrane fouling, cross-contamination, high costs (mainly due to the membrane as well as inefficient cell stack design), poor sealing, shunt current losses and low energy capacity (due to the use of aqueous electrolytes). One of the main factors limiting further development of the redox flow battery so far is the high costs associated with the ion-exchange membrane. Focussed research in this as well as areas such as reactor characterization and electrode design is necessary to ensure the widespread commercialization of the technology. In this paper, various redox flow systems are discussed historically and technically and the latest developments are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cassedy E.S., Grossman P.Z.: Introduction to Energy-Resources, Technology and Society, 2nd edn. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Brown, A.: The UK New and Renewable Energy Programme. Investment in Renewable Energy Professional Engineering Publishing Limited, IMechE, UK (1998)

  3. Wolsky, A.M.: The status and prospects for flywheels and SMES that incorporate HTS. Phys. C 372–376, 1495–1499 (2002)

    Google Scholar 

  4. Jensen J.: Energy Storage. Newnes-Butterworths, London (1980)

    Google Scholar 

  5. Skyllas-Kazacos, M.; Kasherman, D.; Hong, D.R.; Kazacos, M.: Characteristics and performance of 1 kW UNSW vanadium redox battery. J. Power Sources 35, 399–404 (1991)

    Google Scholar 

  6. Baker J.N., Collinson A.: Electrical energy storage at the turn of the Millennium. Power Eng. J. 13, 107–112 (1999)

    Article  Google Scholar 

  7. Xu, Y.; Wen, Y.; Cheng, J.; Cao, G.; Yang, Y.: Study on a single flow acid Cd–chloranil battery. Electrochem. Commun. 11, 1422–1424 (2009)

    Google Scholar 

  8. Thaller, L.H.: Redox Flow Cell Energy Storage Systems. NASA TM-79143, USA (1979)

  9. Hurwitch, J.W.: Opportunities for Advanced Battery Storage in Competitive Electric Market. Energy Storage Technologies for Utility Network Optimisation, EA Technology, Capenhurst (1996)

  10. Hajimolana S.A., Soroush M.: Dynamics and Control of a Tubular Solid-Oxide Fuel Cell. Ind. Eng. Chem. 48, 6112–6125 (2009)

    Article  Google Scholar 

  11. Thaller, L.H.: Electrically rechargeable redox flow cells. In: Proceedings of the 9th IECEC Meeting, San Diego, California, USA (1974)

  12. Ritchie, I.M.; Siira, O.T.: Redox batteries—an overview. In: 8th Biennial Congress of International Solar Energy, Perth, Australia (1983)

  13. Skyllas-Kazacos, M.; Grossmith, F.: Efficient vanadium redox flow cell. J. Electrochem. Soc. 134, 2950–2953 (1987)

    Google Scholar 

  14. Vincent, C.A.; Bonino, F.; Lazzari, M.; Scrosati, B.: Modern Batteries an Introduction to electrochemical power sources. Edward Arnold, London (1984)

  15. Rychcik M., Skyllas-Kazacos M.: Characteristics of a new all-vanadium redox flow battery. J. Power Sources 22, 59–67 (1988)

    Article  Google Scholar 

  16. Li, X.G.; Huang, K.L.; Liu, S.Q.; Tan, N.; Chen, L.Q.: Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox battery application. Trans. Nonferrous Metals Soc. China 17, 195–199 (2007)

    Google Scholar 

  17. Lopez-Atalaya, M.; Codina, G.; Perez, J.R.; Vazquez, J.L.; Aldaz, A.: Optimization studies on a Fe/Cr redox flow battery. J. Power Sources 39, 147–154 (1992)

    Google Scholar 

  18. Bartolozzi M.: Development of redox flow batteries. A historical bibliography. J. Power Sources 27, 219–234 (1989)

    Article  Google Scholar 

  19. Ponce De Leon, C.; Frias-Ferrer, A.; Gonzalez-Garcia, J.; Szanto, D.A.; Walsh, F.C.: Redox flow cells for energy conversion. J. Power Sources 160, 716–732 (2006)

  20. Warshay M., Wright L.O.: Cost and size estimates for a redox bulk energy storage concept. J. Electrochem. Soc. 124, 173–177 (1977)

    Article  Google Scholar 

  21. Wang, Y.Y.; Lin, M.R.; Wan, C.C.: A study of the discharge performance of the Ti/Fe redox flow system. J. Power Sources 13, 65–74 (1984)

    Google Scholar 

  22. Savinell, R.F.; Liu, C.C.; Galasco, R.T.; Chiang, S.H.; Coetzee, J.F.: Discharge characteristics of a soluble iron–titanium battery system. J. Electrochem. Soc. 126, 357–360 (1979)

    Google Scholar 

  23. Liu, C.C.; Galasco, R.T.; Savinell, R.F.: Enhancing performance of the Ti(III)/Ti(IV) couple for redox battery applications. J. Electrochem. Soc. 128, 1755–1757 (1981)

    Google Scholar 

  24. Liu, C.C.; Galasco, R.T.; Savinell, R.F.: Operating performance of an Fe–Ti stationary redox battery in the presence of lead. J. Electrochem. Soc. 129, 2502–2505 (1982)

    Google Scholar 

  25. Mariani, M.P.; Bartolozzi, M.; Moncelli, M.R.: Determination of the kinetic parameters for the Ti(III)/Ti(IV) couple using a rotating disk electrode. J. Electroanal. Chem. 209, 275–282 (1986)

    Google Scholar 

  26. Giner, J.; Cahill, K.: Advanced Screening of Electrode Couples. NASA CR-159738, USA (1980)

  27. Giner, J.; Swette, L.; Cahill, K.: Screening of Redox Couples and Electrode Materials. Giner, Inc., Waltham, Massachusetts, Contract report for NASA, Lewis Research Centre, NASA-19760, USA (1976)

  28. Gahn, R.F.H.; Hagedorn, N.H.; Johnson, J.A.: Cycling performance of the iron–chromium redox energy storage system. NASA TM-87034, Department of Energy, USA (1985)

  29. Johnson D.A., Reid M.A.: Chemical and electrochemical behaviour of the Cr(III)/Cr(II) half-cell in the iron–chromium redox energy storage system. J. Electrochem. Soc. 132, 1058–1062 (1985)

    Article  Google Scholar 

  30. Reid, M.A.; Thaller, L.H.: Preparation and characterization of electrodes for the NASA redox storage system. NASA TM-82702, USA (1980)

  31. Fedkiw P.S.W., Watts R.W.: A mathematical model for the iron/chromium redox battery. J. Electrochem. Soc. 131, 701–709 (1984)

    Article  Google Scholar 

  32. Takahashi S., Hiramatsu T.: Overview of rechargeable battery testing in Japan. J. Power Sources 17, 55–63 (1986)

    Article  Google Scholar 

  33. Futamata, M.; Higuchi, S.; Nakamura, O.; Ogino, I.; Takada, Y.; Okazaki, S.: Performance testing of 10 kW-class advanced batteries for electric energy storage systems in Japan. J. Power Sources 24, 137–155 (1988)

    Google Scholar 

  34. Codina, G.; Perez, J.R.; Lopez-Atalaya, M.; Vasquez, J.L.; Aldaz, A.: Development of a 0.1 kW power accumulation pilot plant based on an Fe/Cr redox flow battery Part I. Considerations on flow-distribution design. J. Power Sources 48, 293–302 (1994)

    Google Scholar 

  35. Codina, G.; Aldaz, A.: Scale-up studies of an Fe/Cr redox flow battery based on shunt current analysis. J. Appl. Electrochem. 22, 668–674 (1992)

    Google Scholar 

  36. Shimizu, M.; Mori, N.; Kuno, M.; Mizunami, K.; Shigematsu, T.: Development of a redox flow battery. Proc. Electrochem. Soc. 88-11, 249–256 (1988)

    Google Scholar 

  37. Nakamura, Y.: Japanese Patent. 63150863 (1988)

  38. Shiokawa, Y.; Yamana, H.; Moriyama, H.: An application of actinide elements for a redox flow battery. Nuclear Sci. Tech. 37, 253–256 (2000)

    Google Scholar 

  39. Paulenova, A.; Creager, S.E.; Navratil, J.D.; Wei, Y.: Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions. J. Power Sources 109, 431–438 (2002)

    Google Scholar 

  40. Bae, C.H.; Roberts, E.P.L.; Dryfe, R.A.W.: Chromium redox couples for application to redox flow batteries. Electrochim. Acta 48, 279–287

  41. Deeya Energy website. http://www.deeyaenergy.com/product/. Accessed 29-5-2011

  42. Butler, P.C.; Miller, D.W.; Verardo, A.E.: Flowing electrolyte battery testing and evaluation. In: Proceedings of the 17th IECEC Meeting, pp. 653–658 (1982)

  43. Butler, P.C.; Eidler, P.A.; Grimes, P.G.; Klassen, S.E.; Miles, R.C.: Zinc/Bromine Batteries. Handbook of Batteries, 2nd edn. McGraw-Hill Inc., New York (1995)

  44. Singh, P.; White, K.; Parker, A.J.: Application of non-aqueous solvents to batteries—part I. Physicochemical properties of propionitrile-water two-phase solvent relevant to zinc–bromine batteries. J. Power Sources 10, 309–318 (1983)

    Google Scholar 

  45. Lex P., Jonshagen B.: The zinc/bromine battery system for utility and remote area applications. Power Eng. J. 13, 142–148 (1999)

    Article  Google Scholar 

  46. Skyllas-Kazacos, M.: Secondary Batteries: Redox Flow Battery–Vanadium Redox. Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam (2009)

  47. Watt-Smith, M.J.; Wills, R.G.A.; Walsh, F.C.: Secondary batteries—flow systems. Encyclopedia of Electrochemical Power Sources. Elsevier, Amsterdam (2010)

  48. Skyllas-Kazacos, M.; Rychcik, M.; Robins, R.; Fane, A.; Green, M.: New all-vanadium redox flow cell. J. Electrochem. Soc. 133, 1057–1058 (1986)

    Google Scholar 

  49. Rychcik M., Skyllas-Kazacos M.: Evaluation of electrode materials for vanadium redox cell. J. Power Sources 19, 45–54 (1087)

    Article  Google Scholar 

  50. Skyllas-Kazacos, M.; Robins, R.: All-vanadium redox battery. US Patent 4,786,567 (1988)

  51. Skyllas-Kazacos, M.; Peng, C.; Cheng, M.: Evaluation of precipitation inhibitors for supersaturated vanadyl electrolytes for the vanadium redox battery. electrochem solid state let 2, 121–122 (1999)

  52. Williams, B.R.; Hennessy, T.: Electric oasis. IEE Power Eng. 19, 28–31 (2005)

  53. Sum, E.; Rychcik, M.; Skyllas-Kazacos, M.: Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources 16, 85–95 (1985)

    Google Scholar 

  54. Sum, E.; Skyllas-Kazacos, M.: A study of the V(II)/V(III) redox couple for redox flow cell applications. J. Power Sources 15, 179–190 (1985)

    Google Scholar 

  55. Fabjan, C.; Garche, J.; Harrer, B.; Jorissen, L.; Kolbeck, C.; Philippi, F.: The vanadium redox-battery: an efficient storage unit for photovoltaic systems. Electrochim. Acta 47, 825–831 (2001)

    Google Scholar 

  56. Menictas, C.; Cheng, M.; Skyllas-Kazacos, M.: Evaluation of NH4VO3 derived electrolyte for vanadium redox flow battery. J. Power Sources 45, 43–54 (1993)

    Google Scholar 

  57. Tsuda I., Nozaki K., Sakuta K., Kurokawa K.: Improvement of performance in redox flow batteries for PV systems. Solar Energy Material Solar Cells 47, 101–107 (1997)

    Article  Google Scholar 

  58. Skyllas-Kazacos, M.; Menictas, C.: The vanadium redox battery for emergency back-up applications. In: Proceedings of Intelec 97 Melbourne, pp. 19–23 (1997)

  59. Rand, D.A.J.; Woods, R.; Dell, R.M.: Batteries for electric vehicles. Wiley, New York (1998)

  60. Rydh, C.J.: Environmental assessment of vanadium redox and lead–acid batteries for stationary energy storage. J. Power Sources 80, 21–29 (1999)

    Google Scholar 

  61. Shibata, A.; Sato, K.: Development of vanadium redox flow battery for electricity storage. Power Eng. J. 13, 130–135 (1999)

    Google Scholar 

  62. Sumitomo Electric Industries. Vanadium Redox Flow Battery. http://global-sei.com/. Accessed 28-05-2011

  63. Huang, K.L.; Li, X.G.; Liu, S.Q.; Tan, N.; Chen, L.Q.: Research progress of vanadium redox flow battery for energy storage in China. Renew. Energy 33, 186–192 (2008)

    Google Scholar 

  64. Fang, B.; Iwasa, S.; Wei, Y.; Arai, T.; Kumagai, M.: Study of the Ce(III)/Ce(IV) redox couple for redox flow battery application. Electrochim. Acta 47, 3971–3976 (2002)

    Google Scholar 

  65. Xi, J.; Wu, Z.; Qiu, X.; Chen, L.: Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J. Power Sources 166, 531–536 (2007)

    Google Scholar 

  66. Zhao, P.; Zhang, H.; Zhou, H.; Yi, B.: Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes. Electrochim. Acta 51, 1091–1098 (2005)

    Google Scholar 

  67. Al-Fetlawi H., Shah A.A., Walsh F.C.: Non-isothermal modelling of the all-vanadium redox flow battery. Electrochim. Acta 55, 78–89 (2009)

    Article  Google Scholar 

  68. Al-Fetlawi, H.; Shah, A.A.; Walsh, F.C.: Modelling the effects of oxygen evolution in the all-vanadium redox flow battery. Electrochim. Acta 55, 3192–3205 (2009)

    Google Scholar 

  69. Shah, A.A.; Al-Fetlawi, H.; Walsh, F.C.: Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery. Electrochim. Acta 55, 1125–1139 (2010)

    Google Scholar 

  70. Walsh F.C.: Electrochemical technology for environmental treatment and clean energy conversion. Pure Appl. Chem. 73, 1819–1837 (2001)

    Article  Google Scholar 

  71. Price, A.; Bartley, S.; Male, S.; Cooley, G.: A novel approach to utility scale energy storage. Power Eng. J. 13, 122–129 (1999)

    Google Scholar 

  72. Zhao, P.; Zhang, H.; Zhou, H.; Chen, J.; Gao, S.; Yi, B.: Characteristics and performance of 10kW class all-vanadium redox-flow battery stack. J. Power Sources 162, 1416–1420 (2006)

    Google Scholar 

  73. Licht S., Davis J.: Disproportionation of aqueous sulphur and sulphide: kinetics of polysulphide decomposition. J. Phys. Chem. 101, 2540–2545 (1997)

    Google Scholar 

  74. Scamman, D.P.; Reade, G.W.; Roberts, E.P.L.: Numerical modelling of a bromide-polysulphide redox flow battery. Part 2: evaluation of a utility-scale system. J. Power Sources 189, 1231–1239 (2009)

    Google Scholar 

  75. Scamman, D.P.; Reade, G.W.; Roberts, E.P.L.: Numerical modelling of a bromide-polysulphide redox flow battery. Part 1: modelling approach and validation for a pilot-scale system. J. Power Sources 189, 1220–1230 (2009)

    Google Scholar 

  76. Clarke, R.; Dougherty, B.; Mohanta, S.; Harrison, P.: Cerium-zinc regenerative fuel cell. In: Joint International Meeting-206th Meeting of the Electrochemical Society/2004 Fall Meeting of the Electrochemical Society of Japan, Honolulu, HI, pp. 1–520 (2004)

  77. Trinidad, P.; Ponce-de-Leon, C.; Walsh, F.C.: The use of electrolyte redox potential to monitor the Ce(IV)/Ce(III) couple. J. Environ. Manage 88, 1417–1425 (2008)

    Google Scholar 

  78. Leung P.K., Ponce-de-Leon C., Low C.T.J., Shah A.A., Walsh F.C.: Characterization of a zinc–cerium flow battery. J. Power Sources 196, 5174–5185 (2011)

    Article  Google Scholar 

  79. Leung, P.K.; Ponce-de-Leon, C.; Walsh, F.C.: An undivided zinc–cerium redox flow battery operating at room temperature (295 K). Electrochem. Commun. 13, 770–773 (2011)

    Google Scholar 

  80. Pletcher, D.; Wills, R.: A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II). Part II. Flow cell studies. Phys. Chem. Chem. Phys. 6, 1779–1785 (2004)

    Google Scholar 

  81. Ponce-de-Leon C., Reade G.W., Whyte I., Male S.E., Walsh F.C.: Characterization of the reaction environment in a filter-press redox flow reactor. Electrochim. Acta 52, 5815–5823 (2007)

    Article  Google Scholar 

  82. Pletcher, D.; Wills, R.: A novel flow battery—a lead acid battery based on an electrolyte with soluble lead(II): III. The influence of conditions on battery performance. J. Power Sources 149, 96–102 (2005)

    Google Scholar 

  83. Hazza, A.; Pletcher, D.; Wills, R.: A novel flow battery—a lead acid battery based on an electrolyte with soluble lead(II): Part I. Preliminary studies. Phys. Chem. Chem. Phys. 6, 1773–1778 (2004)

    Google Scholar 

  84. Hazza, A.; Pletcher, D.; Wills, R.: A novel flow battery—a lead acid battery based on an electrolyte with soluble lead(II): IV. The influence of additives. J. Power Sources 149, 103–111 (2005)

    Google Scholar 

  85. Pletcher, D.; Zhou, H.; Kear, G.; Low, C.T.J.; Walsh, F.C.; Wills, R.G.: A novel flow battery—a lead–acid battery based on an electrolyte with soluble lead(II): Part VI. Studies of the lead dioxide positive electrode. J. Power Sources 180, 630–634 (2008)

    Google Scholar 

  86. Li X., Pletcher D., Walsh F.C.: A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II): Part VII. Further studies of the lead dioxide positive electrode. Electrochim. Acta 54, 4688–4695 (2009)

    Google Scholar 

  87. Collins, G.; Kear, X.L.; Low, C.T.J.; Pletcher, D.; Tangirala, R.; Stratton-Campbell, D.; Walsh, F.C.; Zhang, C.: A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part VIII. The cycling of a 10 cm ×  10 cm flow cell. J. Power Sources 195, 1731–1738 (2010)

    Google Scholar 

  88. Li, X.; Pletcher, D.; Walsh, F.C.: A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II): Part VII. Further studies of the lead dioxide positive electrode. Electrochim. Acta 2009, 4688–4695 (2009)

  89. Skyllas-Kazacos M.: Novel vanadium chloride/polyhalide redox flow battery. J. Power Sources 124, 299–302 (2003)

    Article  Google Scholar 

  90. Skyllas-Kazacos, M.; Limantari, Y.: Kinetics of the chemical dissolution of vanadium pentoxide in acidic bromide solutions. J. Appl. Electrochem. 34, 681–685 (2004)

    Google Scholar 

  91. Skyllas-Kazacos, M.; Kazacos, G.; Poon, G.; Verseema, H.: Recent advances with UNSW vanadium-based redox flow batteries. Intl. J. Energy Res. 34, 182–189 (2010)

    Google Scholar 

  92. Yamamura, T.; Shiokawa, Y.; Ikeda, Y.; Tomiyasu, H.: Electrochemical investigation of tetravalent uranium beta-diketones for active materials of all-uranium redox flow battery. Nuclear Sci. Tech. 3, 445–448 (2002)

    Google Scholar 

  93. Yamamura, T.; Shiokawa, Y.; Yamana, H.; Moriyama, H.: Electrochemical investigation of uranium [beta]-diketonates for all-uranium redox flow battery. Electrochim. Acta 48, 43–50 (2002)

    Google Scholar 

  94. Yamamura, T.; Shirasaki, K.; Li, D.X.; Shiokawa, Y.: Electrochemical and spectroscopic investigations of uranium(III) with N,N,N′,N′-tetramethylmalonamide in DMF. J. Alloys Comp. 418, 139–144 (2006)

    Google Scholar 

  95. Yamamura, T.; Shirasaki, K.; Shiokawa, Y.; Nakamura, Y.; Kim, S.Y.: Characterization of tetraketone ligands for active materials of all-uranium redox flow battery. J. Alloys Comp. 374, 349–353 (2004)

    Google Scholar 

  96. Yamamura T., Watanabe N., Shiokawa Y.: Characterization of tetraketone ligands for active materials of all-uranium redox flow battery. J. Alloys Comp. 408, 1260–1266 (2006)

    Article  Google Scholar 

  97. Shirasaki, K.; Yamamura, T.; Herai, T.; Shiokawa, Y.: Electrodeposition of uranium in dimethyl sulfoxide and its inhibition by acetylacetone as studied by EQCM. J. Alloys Comp. 418, 217–221 (2006)

    Google Scholar 

  98. Shirasaki, K.; Yamamura, T.; Shiokawa, Y.: Electrolytic preparation, redox titration and stability of pentavalent state of uranyl tetraketonate in dimethyl sulfoxide. J. Alloys Comp. 408–412, 1296–1301 (2006)

    Google Scholar 

  99. Hasegawa, K.; Kimura, A.; Yamamura, T.; Shiokawa, Y.: Estimation of energy efficiency in neptunium redox flow batteries by the standard rate constants. J. Phys. Chem. Solids 66, 593–595 (2005)

    Google Scholar 

  100. Xia, X.; Liu, H.T.; Liu, Y.: Studies of the feasibility of a Ce4+/Ce3+–V2+/V3+ redox cell. J. Electrochem. Soc. 149, A426–A430 (2002)

    Google Scholar 

  101. Chen, Y.D.; Santhanam, K.S.V.; Bard, A.J.: Solution redox couples for electrochemical energy storage. I. Iron(III)–Iron(II) complexes with O-phenanthroline and related ligands. J. Electrochem. Soc. 128, 1460–1467 (1981)

    Google Scholar 

  102. Bae, C.H.: Cell Design and Electrolytes of a Novel Redox Flow Battery. PhD Thesis, UMIST, Manchester, pp. 1–215 (2001)

  103. Chakrabarti, M.H.; Dryfe, R.A.W.; Roberts, E.P.L.: Evaluation of electrolytes for redox flow battery applications. Electrochim. Acta 52, 2189–2195 (2007)

    Google Scholar 

  104. Bae, C.H.; Roberts, E.P.L.; Chakrabarti, M.H.; Saleem, M.: All-chromium redox flow battery for renewable energy storage. Intl. J. Green Energy 8, 248–264 (2011)

    Google Scholar 

  105. Liu, Q.; Shinkle, A.A.; Li, Y.; Monroe, C.W.; Thompson, L.; Sleightholme, A.E.S.: Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries. Electrochem. Commun. 12, 1634–1637 (2010)

    Google Scholar 

  106. Liu Q., Sleightholme A.E.S., Shinkle A.A., Li Y., Thompson L.T.: Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries. Electrochem. Commun. 11, 2312–2315 (2009)

    Article  Google Scholar 

  107. Shinkle, A.A.; Sleightholme, A.E.S.; Griffith, L.D.; Thompson, L.T.; Monroe, C.W.: Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery. J. Power Sources. 206, 490–496 (2012)

    Google Scholar 

  108. Chakrabarti M.H., Roberts E.P.L., Bae C.H., Saleem M.: Ruthenium based redox flow battery for solar energy storage. Energy Conv. Manage 52, 2501–2508 (2011)

    Article  Google Scholar 

  109. Matsuda, Y.; Tanaka, K.; Okada, M.; Takasu, Y.; Morita, M.; Matsumura-Inoue, T.: A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte. J. Appl. Electrochem. 18, 909–914 (1988)

    Google Scholar 

  110. Chakrabarti, B.K.: Investigation of electrolytes for a novel Redox Flow Battery. PhD Thesis, UMIST, Manchester, pp. 1–250 (2003)

  111. Chakrabarti, M.H.; Dryfe, R.A.W.; Roberts, E.P.L.: Organic electrolytes for redox flow batteries. J. Chem. Soc. Pak. 29, 294–300 (2007)

    Google Scholar 

  112. Sleightholme, A.E.S.; Shinkle, A.A.; Liu, Q.; Li, Y.; Monroe, C.W.; Thompson, L.: Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries. J. Power Sources 196, 5742–5745 (2011)

    Google Scholar 

  113. Wen, Y.H.; Cheng, J.; Ma, P.H.; Yang, Y.S.: Bifunctional redox flow battery-1 V(III)/V(II)-glyoxal(O2) system. Electrochim. Acta 53, 3514–3522 (2008)

    Google Scholar 

  114. Wen, Y.H.; Cheng, J.; Xun, Y.; Ma, P.H.; Yang, Y.S.: Bifunctional redox flow battery: 2. V(III)/V(II)-l-cystine(O2) system. Electrochim. Acta 53, 6018–6023 (2008)

    Google Scholar 

  115. Xue, F.Q.; Wang, Y.L.; Wang, W.H.; Wang, X.D.: Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery. Electrochim. Acta 53, 6636–6642 (2008)

    Google Scholar 

  116. Cheng, J.; Zhang, L.; Yang, Y.S.; Wen, Y.H.; Cao, G.P.; Wang, X.D.: Preliminary study of single flow zinc-nickel battery. Electrochem. Commun. 9, 2639–2642 (2007)

    Google Scholar 

  117. Xu, Y.; Wen, Y.H.; Cheng, J.; Cao, G.P.; Yang, Y.S.: A study of tiron in aqueous solutions for redox flow battery application. Electrochim. Acta 55, 715–720 (2010)

    Google Scholar 

  118. Chakrabarti, M.H.; Roberts, E.P.L.: Electrochemical separation of ferro/ferricyanide using a membrane free redox flow cell. NED Univ. J. Res. 5, 43–59 (2008)

    Google Scholar 

  119. Chakrabarti M.H., Roberts E.P.L.: Analysis of mixtures of ferrocyanide and ferricyanide using UV–visible spectroscopy for characterization of a novel redox flow battery. J. Chem. Soc. Pak. 30, 817–823 (2008)

    Google Scholar 

  120. Chakrabarti, M.H.; Roberts, E.P.L.; Saleem, M.: Charge–discharge performance of a novel undivided redox flow battery for renewable energy storage. Intl. J. Green Energy 7, 445–460 (2010)

    Google Scholar 

  121. Bae, C.; Chakrabarti, H.; Roberts, E.: A membrane free electrochemical cell using porous Flow through graphite felt electrodes. J. Appl. Electrochem. 38, 637–644 (2008)

    Google Scholar 

  122. Katayama, Y.; Konishiike, I.; Miura, T.; Kishi, T.: Redox reaction in 1-ethyl-3-methylimidazolium-iron chlorides molten salt system for battery application. J. Power Sources 109, 327–332 (2002)

    Google Scholar 

  123. Wen, Y.H.; Zhang, H.M.; Qian, P.; Zhou, H.T.; Zhao, P.; Yi, B.L.; Yang, Y.S.: A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application. Electrochim. Acta 51, 3769–3775 (2006)

    Google Scholar 

  124. Kummer J.T., Oei D.G.: A chemically regenerative redox fuel cell. II. J. Appl. Electrochem. 15, 619–629 (1985)

    Article  Google Scholar 

  125. Murthy, A.S.N.; Srivastava, T.: Fe(III)/Fe(II) ligand systems for use as negative half-cells in redox-flow cells. J. Power Sources 27, 119–126 (1989)

    Google Scholar 

  126. Giner, J.D.; Stark, H.H.: Redox battery including a bromine positive electrode and a chromium ion negative electrode, and method. US Patent 4469760 (1984)

  127. Saji, T.; Aoyagui, S.: Electron-transfer kinetics of transition-metal complexes in lower oxidation states. IV. Electrochemical electron-transfer rates of tris(2,2′bipyridine) complexes of iron, ruthenium, osmium, chromium, titanium, vanadium and molybdenum. Electroanal. Chem. 63, 31–37 (1975)

    Google Scholar 

  128. Hosseiny, S.S.; Saakes, M.; Wessling, M.: A polyelectrolyte membrane-based vanadium/air redox flow battery. Electrochem. Commun. 13, 751–754 (2011)

    Google Scholar 

  129. Hruska, L.W.; Savinell, R.F.: Investigation of factors affecting performance of the iron-redox battery. J. Electrochem. Soc. 128, 18–25 (1981)

    Google Scholar 

  130. Wu H., Selman R.J.; Hollandsworth, Selman R.J.; Hollandsworth: Mass transfer and current distribution in a zinc/redox-battery flow cell. Indian J. Tech. 24, 372–380 (1986)

    Google Scholar 

  131. Gonzalez, A.; Gallachóir, B.; McKeogh, E.; Lynch, K.: Study of electricity storage technologies and their potential to address wind energy intermittency in Ireland, May 2004. http://www.seai.ie/uploadedfiles/FundedProgrammes/REHC03001FinalReport.pdf. Accessed 25-05-2011 (2004)

  132. Prudent Energy-case study: VRB Technology in Japan. http://www.pdenergy.com/pdfs/casestudy_japan.pdf. Accessed 28-5-2011

  133. Tsekouras, G.; Anastasopoulos, C.; Kontargyri, V.; Kanellos, F.; Karanasiou, I.; Salis, A.; Mastorakis, N.: A demand side management program of vanadium redox energy storage system for an interconnected power system. In: Proceedings of the 2nd WSEAS/IASME International Conference on Energy Planning, Energy Saving, Environmental Education (EPESE’08), Corfu, Greece (2008)

  134. Steeley, W.: VRB Energy Storage for Voltage Stabilization—Testing and Evaluation of the PacifiCorp Vanadium Redox Battery Energy Storage System at Castle Valley. EPRI Report 1008434. Technical Update. Utah (2005)

  135. Skyllas-Kazacos, M.: Chapter on “Energy storage for stand-alone/hybrid systems: Electro-chemical Energy Storage Technologies” published in Stand-alone and Hybrid Wind Systems: Technology. Energy Storage and Applications Editor: Prof. J.K. Kaldellis. Woodhead Publishing (2010)

  136. Skyllas-Kazacos M., Chakrabarti M.H., Hajimolana S.A., Mjalli F.S., Saleem M.: Progress in flow battery research–a Review. J. Electrochem. Soc. 158, R55–R79 (2011)

    Article  Google Scholar 

  137. Premium Power website: http://www.premiumpower.com/. Accessed 26-5-2011

  138. Redflow website: http://www.redflow.com.au/. Accessed 27-5-2011

  139. Han, P.; Wang, H.; Liu, Z.; Chen, X.; Ma, W.; Yao, J.; Zhu, Y.; Cui, G.: Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO +2 and V2+/V3+ redox couples for a vanadium redox flow battery. Carbon 49, 693–700 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Harun Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S. et al. Redox Flow Battery for Energy Storage. Arab J Sci Eng 38, 723–739 (2013). https://doi.org/10.1007/s13369-012-0356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0356-5

Keywords

Navigation