Skip to main content

Advertisement

Log in

Determination of the blood viscosity and yield stress with a pressure-scanning capillary hemorheometer using constitutive models

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

We investigated the applicability of two non-Newtonian constitutive models (Casson and Herschel-Bulkley models) in the determination of the blood viscosity and yield stress using a pressure-scanning microfluidic hemorheometer. The present results were compared with the measurements through a precision rheometer (ARES2). For a Newtonian fluid (standard oil), the two constitutive models showed excellent agreement with a reference value and the measurement of ARES2. For human blood as a non-Newtonian fluid, both the Casson and Herschel-Bulkley models exhibited similar viscosity results over a range of shear rates and showed excellent agreement with the ARES2 results. The Herschel-Bulkley model yielded a slightly higher value than other results at low shear rates (\( \dot \gamma \) < 10), which may be due to the relatively high value of the yield stress. The yield stress values for whole blood were 14.4 mPa for the Casson model and 32.5 mPa for the Herschel-Bulkley model, respectively. Thus, the present study showed that the Casson model would be better than the Herschel-Bulkley model for representing the non-Newtonian characteristics of blood viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baskurt, O.K., M. Boynard, G.C. Cokelet, P. Connes, B.M. Cooke, S. Forconi, F. Liao, M.R. Hardeman, F. Jung, H.J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J.L. Wautier, 2009, New guidelines for hemorheological laboratory techniques, Clinical Hemorheol. Microcirc. 42, 75–97.

    Google Scholar 

  • Charm, S. E. and G. S. Kurland, 1967, Static method for determining blood yield stress, Nature 216, 1121–1123

    Article  CAS  Google Scholar 

  • Chien S., 1970, Shear dependence of effective cell volume as a determinant of blood viscosity, Science 168, 977–979.

    Article  CAS  Google Scholar 

  • Ferguson J. and Z. Kemblowski, 1991, Applied Fluid Rheology, Elsevier, London.

    Google Scholar 

  • Fossum, E., A. Hoieggen, and A. Moan, 1997, Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors, Blood Pressure 6, 161–165.

    Article  CAS  Google Scholar 

  • Fung, Y. C., 1987, Biomechanics-Mechanical Properties of Living Tissues, Springer, New York, 62–100

    Google Scholar 

  • Kim S., Y. I. Cho, W. N. Hogenauer, and K. R. Kensey, 2002, A method of isolating surface tension and yield stress effects in a U-shaped scanning capillary-tube viscometer using a casson model, J. Non-Newtonian Fluid Mech 103, 205–219.

    Article  CAS  Google Scholar 

  • Kim, S., Y. I. Cho, A. H. Jeon, B. Hogenauer, and K. R. Kensey, 2000, A new method for blood viscosity measurement, J. Non-Newtonian Fluid Mech 94, 47–56.

    Article  CAS  Google Scholar 

  • S. Kim, B. Namgung, P. K. Ong, Y. I. Cho, K. J. Chun, and D. Lim, 2009, Determination of rheological properties of whole blood with a scanning capillary-tube rheometer using constitutive models, J. Mechanical Science and Technology 23, 1718–1722.

    Article  Google Scholar 

  • Ogawa, K., S. Okawara, S. Ito, and K. Taniguchi, 1991, Blood viscometer with vacuum glass suction tube and needle, J. Chemical Eng. of Japan 24, 215–221.

    Article  Google Scholar 

  • C. Picart, J. M. Piau, and H. Galliard, 1998, Human blood shear yield stress and its hematocrit dependence, J. Rheol. 42, 1–12.

    Article  CAS  Google Scholar 

  • Picart C., P.H. Carpentier, H. Galliard, and J.M. Piau, 1999, Blood yield stress in systemic sclerosis. Am. J. Physiol. 276, H771–H777.

    CAS  Google Scholar 

  • Reinhart, W.H., A. Haeberli, J. Stark, and P.W. Straub, 1990, Influence of blood withdrawal and anticoagulant on clotting activity, hematologic data, and certain rheologic measurements, J. Lab. Clinical Med 115, 98–103.

    CAS  Google Scholar 

  • Shin, S., D.Y. Keum, and Y.H. Ku, 2002, Blood viscosity measurement using a pressure-scanning capillary viscometer, KSME Int. J 16, 1719–1724.

    Google Scholar 

  • Shin, S., J.X. Hou, J.S. Suh, and M. Singh, 2007, Validation and application of a microfluidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability, Clinical Hemorheol. Microcirc. 37, 319–328.

    CAS  Google Scholar 

  • Sun, N. and D. De Kee, 2001, Simple shear, hysteresis and yield stress in biofluids, Can. J. Chem. Eng. 79, 36–41.

    Article  CAS  Google Scholar 

  • Yilmaz F. and M.Y. Gundongdu, 2008, A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions, J. Korea-Australia Rheol. 20, 197–211

    Google Scholar 

  • Zydney, A. L., J. D. Oliver, and C. K. Colton, 1991, A constitutive equation for the viscosity of stored red blood cell suspensions: effect of hematocrit, shear rate, and suspending phase, J. Rheol. 35, 1639–1680.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sehyun Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, BK., Xue, S., Nam, J. et al. Determination of the blood viscosity and yield stress with a pressure-scanning capillary hemorheometer using constitutive models. Korea-Aust. Rheol. J. 23, 1–6 (2011). https://doi.org/10.1007/s13367-011-0001-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-011-0001-y

Keywords

Navigation