Skip to main content
Log in

Leidenfrost Phenomenon-assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution ‘Exactive Orbitrap’ mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10–9 M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Venter, A., Nefliu, M., Graham Cooks, R.: Ambient desorption ionization mass spectrometry. Trends Anal. Chem. 27, 284–290 (2008)

    Article  CAS  Google Scholar 

  2. Harris, G.A., Nyadong, L., Fernandez, F.M.: Recent developments in ambient ionization techniques for analytical mass spectrometry. Analyst 133, 1297–1301 (2008)

    Article  CAS  Google Scholar 

  3. Takáts, Z., Wiseman, J.M., Gologan, B., Cooks, R.G.: Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473 (2004)

    Article  Google Scholar 

  4. Cody, R.B., Laramée, J.A., Durst, H.D.: Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77, 2297–2302 (2005)

    Article  CAS  Google Scholar 

  5. McEwen, C.N., McKay, R.G., Larsen, B.S.: Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal. Chem. 77, 7826–7831 (2005)

    Article  CAS  Google Scholar 

  6. Shiea, J., Huang, M., Hsu, H., Lee, C., Yuan, C., Beech, I., Sunner, J.: Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun Mass Spectrom 19, 3701–3704 (2005)

    Google Scholar 

  7. Chen, H., Venter, A., Cooks, R.G.: Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem. Commun. 19, 2042–2044 (2006)

  8. Hiraoka, K., Nishidate, K., Mori, K., Asakawa, D., Suzuki, S.: Development of probe electrospray using a solid needle. Rapid Commun. Mass Spectrom. 21, 3139–3144 (2007)

    Article  CAS  Google Scholar 

  9. Na, N., Zhao, M., Zhang, S., Yang, C., Zhang, X.: Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 1859–1862 (2007)

    Article  CAS  Google Scholar 

  10. Harper, J.D., Charipar, N.A., Mulligan, C.C., Zhang, X., Cooks, R.G., Ouyang, Z.: Low-temperature plasma probe for ambient desorption ionization. Anal. Chem. 80, 9097–9104 (2008)

    Article  CAS  Google Scholar 

  11. Harris, G.A., Galhena, A.S., Fernández, F.M.: Ambient sampling/ionization mass spectrometry: applications and current trends. Anal. Chem. 83, 4508–4538 (2011)

    Article  CAS  Google Scholar 

  12. Van Berkel, G.J., Pasilis, S.P., Ovchinnikova, O.: Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J. Mass Spectrom. 43, 1161–1180 (2008)

    Article  Google Scholar 

  13. Chen, R.-H., Chiu, S.-L., Lin, T.-H.: Resident time of a compound drop impinging on a hot surface. Appl. Therm. Eng. 27, 2079–2085 (2007)

    Article  CAS  Google Scholar 

  14. Covey, T.R., Thomson, B.A., Schneider, B.B.: Atmospheric pressure ion sources. Mass Spectrom. Rev. 28, 870–897 (2009)

    Article  CAS  Google Scholar 

  15. Gottfried, B.S., Lee, C.J., Bell, K.J.: The leidenfrost phenomenon: film boiling of liquid droplets on a flat plate. Int. J. Heat Mass Transfer. 9, 1167–1188 (1966)

    Article  CAS  Google Scholar 

  16. Gottfried, B.S., Bell, K.J.: Film boiling of spheroidal droplets. Leidenfrost phenomenon. Ind. Eng. Chem. Fund. 5, 561–568 (1966)

    Article  CAS  Google Scholar 

  17. NASA - Dryden Technical Report Server. Available at: http://www.nasa.gov/centers/dryden/news/DTRS/1966/citation.html. Accessed 26 May 2012

  18. Bernardin, J.D., Mudawar, I.: Film boiling heat transfer of droplet streams and sprays. Int. J. Heat Mass Transfer. 40, 2579–2593 (1997)

    Article  CAS  Google Scholar 

  19. Stoll, R., Röllgen, F.W.: Thermal evaporation of intact positive ions of quaternary ammonium and phosphonium salts. J. Chem. Soc., Chem. Commun. 16, 789–789 (1980)

    Article  Google Scholar 

  20. Chen, H., Ouyang, Z., Cooks, R.G.: Thermal production and reactions of organic ions at atmospheric pressure. Angew. Chem. Int. 45, 3656–3660 (2006)

    Article  CAS  Google Scholar 

  21. Jackson, A.U., Garcia-Reyes, J.F., Harper, J.D., Wiley, J.S., Molina-Díaz, A., Ouyang, Z., Cooks, R.G.: Analysis of drugs of abuse in biofluids by low temperature plasma (LTP) ionization mass spectrometry. Analyst 135, 927–933 (2010)

    Article  CAS  Google Scholar 

  22. O’Neal, C.L., Poklis, A.: Simultaneous determination of acetylcodeine, monoacetylmorphine, and other opiates in urine by GC-MS. J. Anal. Toxicol. 21, 427–432 (1997)

    Google Scholar 

  23. Substance Abuse and Mental Health Publications| SAMHSA Store. Federal Register / Vol. 73, No. 228 / Tuesday, November 25, 2008 / Notices Available at: www.gpo.gov/fdsys/pkg/FR-2008-11-25/pdf/E8-26726.pdf. Accessed 6 Aug 2012

  24. Lam, C.-W., Lan, L., Che, X., Tam, S., Wong, S.S.-Y., Chen, Y., Jin, J., Tao, S.-H., Tang, X.-M., Yuen, K.-Y., Tam, P.K.-H.: Diagnosis and spectrum of melamine-related renal disease: plausible mechanism of stone formation in humans. Clin. Chim. Acta 402, 150–155 (2009)

    Article  CAS  Google Scholar 

  25. Huang, G., Ouyang, Z., Cooks, R.G.: High-throughput trace melamine analysis in complex mixtures. Chem. Commun. 5, 556–558 (2009)

    Article  Google Scholar 

  26. Vaclavik, L., Rosmus, J., Popping, B., Hajslova, J.: Rapid determination of melamine and cyanuric acid in milk powder using direct analysis in real time-time-of-flight mass spectrometry. J. Chromatogr. A 1217, 4204–4211 (2010)

    Article  CAS  Google Scholar 

  27. Shieh, I.-F., Lee, C.-Y., Shiea, J.: Eliminating the interferences from tris buffer and SDS in protein analysis by fused-droplet electrospray ionization mass spectrometry. J. Proteome Res. 4, 606–612 (2005)

    Article  CAS  Google Scholar 

  28. Beuhler, R.J., Flanigan, E., Greene, L.J., Friedman, L.: Proton transfer mass spectrometry of peptides. Rapid heating technique for underivatized peptides containing arginine. J. Am. Chem. Soc. 96, 3990–3999 (1974)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support for this work by the Strategic Funds for the Promotion of Science and Technology from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenzo Hiraoka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1562 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, S., Chen, L.C., Mandal, M.K. et al. Leidenfrost Phenomenon-assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry. J. Am. Soc. Mass Spectrom. 24, 341–347 (2013). https://doi.org/10.1007/s13361-012-0564-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-012-0564-y

Key words

Navigation