Skip to main content
Log in

Semi-empirical modeling of fuselage–rotor interference for comprehensive codes: the fundamental model

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

The flow field around the isolated HART II fuselage is computed by a computational fluid dynamics code. Velocities normal to the rotor rotational plane are extracted in a volume around the rotor as a data basis. A simple semi-empirical analytical formulation of the fuselage-induced velocities, based on parameter identification from computational fluid dynamics or measured data, is developed for use in comprehensive rotor codes. This model allows the computation of fuselage–rotor interferences on the rotor blade element level. It also allows the prediction of the rotor wake geometry deformation due to the presence of the fuselage in both prescribed wake and free-wake codes. Its impact on rotor thrust, power and trim is evaluated analytically using blade element momentum theory and by DLR’s comprehensive rotor code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(A\), \(B\) :

Non-dimensional effective begin and end of airfoiled section

\(A_0\) :

Magnitude

\(c\) :

Rotor blade chord (m)

\(C_{l\alpha}\) :

Lift curve slope

\(c_n\) :

Polynomial coefficient

\(C_T\) :

Thrust coefficient, \(C_T=T/(\rho \pi R^2(\Omega R)^2)\)

\(M\) :

Mach number

\(M_\beta\) :

Aerodynamic moment about flap hinge (Nm)

\(N_b\) :

Number of blades

\(P\) :

Rotor power (kW)

\(r\) :

Non-dimensional radial coordinate

\(R\) :

Rotor radius (m)

\(S_A, S_x, S_y\) :

Shape functions of amplitude, dito in \(x\)- and in \(y\)-direction

\(T\) :

Rotor thrust (N)

\(v_{if}\) :

Fuselage-induced velocity (m/s)

\(V_T\) :

Tangential velocity at the blade element in the hub plane (m/s)

\(V_P\) :

Velocity at the blade element perpendicular to the hub plane (m/s)

\(V_\infty\) :

Airspeed (m/s)

\(x, y, z\) :

Hub-fixed coordinates (m)

\(x_0, y_0, z_0\) :

Position of maximum induced velocities (m)

\(z_{\rm v}\) :

Vortex position (m)

\(z_R, z_F\) :

Vortex position due to rotor- and fuselage-induced velocities (m)

\(\alpha , \alpha _a\) :

Shaft and blade element angle of attack (\(^\circ\))

\(\Theta\) :

Blade element pitch angle (\(^\circ\))

\(\Theta _0, \Theta _C, \Theta _S\) :

Collective, lateral and longitudinal cyclic control angle (\(^\circ\))

\(\lambda _{if}\) :

Fuselage-induced inflow ratio, \(\lambda _{if}=v_{if}/V_\infty\)

\(\mu\) :

Advance ratio, \(\mu =V_\infty \cos \alpha /(\Omega R)\)

\(\rho\) :

Air density (kg/m\(^3\))

\(\sigma\) :

Rotor solidity (rectangular blade), \(\sigma =N_b c/(\pi R)\)

\(\psi\) :

Rotor blade azimuth (\(^\circ\))

\(\Omega\) :

Rotor rotational frequency (rad/s)

References

  1. Sheridan, P.F., Smith, R.P.: Interactional aerodynamics—a new challenge to helicopter technology. J. Am. Helicopter Soc. 25(1), 3–21 (1980)

    Google Scholar 

  2. Huber, H., Polz, G.: Studies on blade-to-blade and rotor–fuselage–tail interferences. Aircr. Eng. Aerosp. Technol. 55(10), 2–12 (1983)

    Article  Google Scholar 

  3. Keys, C., Wiesner, R.: Guidelines for reducing helicopter parasite drag. J. Am. Helicopter Soc. 20(1), 31–40 (1975)

    Article  Google Scholar 

  4. Leishman, J.G., Bi, N.: Aerodynamic interactions between a rotor and a fuselage in forward flight. J. Am. Helicopter Soc. 35(3), 22–31 (1990)

    Article  Google Scholar 

  5. McVeigh, M.A., Grauer, W.K., Paisley, D.J.: Rotor/airframe interactions on tiltrotor aircraft. J. Am. Helicopter Soc. 35(3), 43–51 (1990)

    Article  Google Scholar 

  6. Betzina, M.D., Smith, C.A., Shinoda, P.: Rotor/body aerodynamic interactions. VERTICA 9(1), 65–81 (1985)

    Google Scholar 

  7. Smith, C.A., Betzina, M.D.: Aerodynamic loads induced by a rotor on a body of revolution. J. Am. Helicopter Soc. 31(1), 29–36 (1986)

    Google Scholar 

  8. Le Pape, A., Gatard, J., Monnier, J.-C.: Experimental investigations of rotor–fuselage aerodynamic interactions. J. Am. Helicopter Soc. 52(2), 99–109 (2007)

    Article  Google Scholar 

  9. Crouse, G.L., Leishman, G.J., Bi, N.: Theoretical and experimental study of unsteady rotor/body aerodynamic interactions. J. Am. Helicopter Soc. 37(1), 55–65 (1992)

    Article  Google Scholar 

  10. Berry, J., Bettschart, N.: Rotor/fuselage interaction: analysis and validation with experiment. In: 53rd Annual Forum of the American Helicopter Society, Virginia Beach, VA, 29 April–1 May 1997

  11. Wilby, P.G., Young, C., Grant, J.: An investigation of the influence of fuselage flow field on rotor loads and the effects of vehicle configuration. VERTICA 3(2), 79–94 (1979)

    Google Scholar 

  12. Rand, O.: Influence of interactional aerodynamics on helicopter rotor/fuselage coupled response in hover and forward flight. J. Am. Helicopter Soc. 34(4), 28–36 (1989)

    Article  Google Scholar 

  13. Mavris, D.N., Komerath, N.M., McMalhon, H.M.: Prediction of aerodynamic rotor–airframe interactions in forward flight. J. Am. Helicopter Soc. 34(4), 37–46 (1989)

    Article  Google Scholar 

  14. Schillings, J., Reinesch, R.: The effect of airframe aerodynamics on V-22 rotor loads. J. Am. Helicopter Soc. 34(1), 26–33 (1989)

    Article  Google Scholar 

  15. Lorber, P.F., Egolf, T.A.: An unsteady helicopter rotor–fuselage aerodynamic interaction analysis. J. Am. Helicopter Soc. 35(3), 32–42 (1990)

    Article  Google Scholar 

  16. Crouse, G.L.: Active control of vibratory airloads induced by helicopter rotor–fuselage interactions, AIAA-93-1363-CP, AIAA/ASME/ASCE/AHS/ASC 34th Structures, structural dynamics, and materials conference, La Jolla, CA, 19–21 April 1993.

  17. Quackenbush, T.R., Lam, C.-M.G., Bliss, D.B.: Vortex methods for the computational analysis of rotor/body interaction. J. Am. Helicopter Soc. 39(4), 14–24 (1994)

    Article  Google Scholar 

  18. Wachspress, D.A., Quackenbush, T.R., Boschitsch, A.H.: Rotorcraft interactional aerodynamics with fast vortex/fast panel methods. J. Am. Helicopter Soc. 48(4), 223–235 (2003)

    Article  Google Scholar 

  19. Kenyon, A.R., Brown, R.E.: Wake dynamics and rotor–fuselage aerodynamic interactions. J. Am. Helicopter Soc. 54(1), 012003–1–012003–18 (2009)

    Article  Google Scholar 

  20. Yamauchi, G.K., Johnson, W.: Analysis of axi-symmetric body effects on rotor aerodynamics using modified slender body theory. In: AIAA-84-2204, AIAA 2nd applied aerodynamics conference, Seattle, WA, 21–23 August 1984

  21. Kelly, M.E., Brown, R.E.: The effect of blade aerodynamic modeling on the prediction of the blade airloads and the acoustic signature of the HART II rotor. In: 35th European Rotorcraft Forum, Hamburg, Germany, 22–25 September 2009

  22. Nam, H.J., Park, Y.M., Kwon, O.J.: Simulation of unsteady rotor–fuselage aerodynamic interaction using unstructured adaptive meshes. J. Am. Helicopter Soc. 51(2), 141–149 (2006)

    Article  Google Scholar 

  23. Renaud, T., O’Brien, D., Smith, M., Potsdam, M.: Evaluation of isolated fuselage and rotor–fuselage interaction using computational fluid dynamics. J. Am. Helicopter Soc. 53(1), 3–17 (2008)

    Article  Google Scholar 

  24. Wagner, S., Dietz, M., Embacher, M.: Influence of grid arrangements and fuselage on the numerical simulation of the helicopter aeromechanics in slow descent flight. In: 15th International Conference on Computational & Experimental Engineering and Sciences (ICCES08), Honolulu, HI, 17–22 March 2008

  25. Lim, J.W., Dimanlig, A.C.B.: The effect of fuselage and rotor hub on blade–vortex interaction airloads and rotor wakes, 36th European Rotorcraft Forum, Paris, France, 7–9 September 2010

  26. Jung, S.N., Sa, J.H., You, Y.H., Park, J.S., Park, S.H.: Loose fluid-structure coupled approach for a rotor in descent incorporating fuselage effects. J. Aircr. 50(4), 1016–1026 (2013)

    Article  Google Scholar 

  27. Lim, J.W., Wissink, A., Jayaraman, B., Dimanlig, A.: Helios adaptive mesh refinement for HART II rotor wake simulations. In: 68th Annual Forum of the American Helicopter Society, Ft. Worth, TX, 1–3 May 2012

  28. Biava, M., Vivegano, L.: Simulation of a complete helicopter: a CFD approach to the study of interference effects. Aerosp. Sci. Technol. 19(1), 37–49 (2012)

    Article  Google Scholar 

  29. van der Wall, B.G.: Extensions of prescribed wake modeling for helicopter rotor BVI noise investigations. CEAS Aeronaut. J. 3(1), 93–115 (2012)

    Article  Google Scholar 

  30. Johnson, W.: CAMRAD II. Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics. Johnson Aeronautics, Palo Alto, CA (1994)

    Google Scholar 

  31. Stepniewski, W.Z., Keys, C.N.: Rotary-wing aerodynamics. ISBN 0-486-64647-5, Dover Publications, New York, NY (1984)

  32. Dreier, M.E.: Introduction to helicopter and tiltrotor flight simulation. ISBN-13:978-1-56347-873-4, AIAA Education Series, Reston, VA (2007)

  33. van der Wall, B.G.: Analytic formulation of unsteady profile aerodynamics and its application to simulation of rotors, ESA-TT-1244, (1992) (Translation of DLR-FB 90–28, 1990)

  34. van der Wall, B.G., Lim, J.W., Smith, M.J., Jung, S.N., Bailly, J., Baeder, J.D., Boyd, D.D.: An assessment of comprehensive code prediction state-of-the-art using the HART II international workshop data. In: 68th Annual Forum of the American Helicopter Society, Ft. Worth, TX, USA, 1–3 May 2012

  35. Göpel, C., van der Wall, B.G.: Über den Einfluß der Rotorversuchsstände ROTEST und ROTOS auf die Rotordurchströmung im DNW (About the influence of the rotor test rigs ROTEST and ROTOS on the flow in the rotor disk in DNW), DLR Mitt. 91–16 (1991)

  36. Kim, J.W., Park, S.H., Yu, Y.H.: Euler and Navier–Stokes simulations of helicopter rotor blade in forward flight using an overlapped grid solver, AIAA 2009–4268, 19th AIAA CFD Conference, San Antonio, TX, 22–25 June 2009

  37. Park, S.H., Kwon, J.H.: Implementation of \(k-\omega\) turbulence models in an implicit multigrid method. AIAA J. 42(7), 1348–1357 (2004)

    Article  Google Scholar 

  38. van der Wall, B.G.: A comprehensive rotary-wing database for code validation: the HART II international workshop, Aeronaut. J. R. Aeronaut. Soc. 115(1163), 91–102; erratum: 115(1166), 220 (2011)

  39. Jacob, H.G.: Rechnergestützte Optimierung statischer und dynamischer Systeme. Fachberichte Messen, Steuern, Regeln, Band 6; ISBN: 3-540-11641-9, Springer (1982)

  40. Leishman, J.G.: Principles of helicopter aerodynamics. ISBN 0-521-66060-2, Cambridge University Press, Cambridge, UK (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berend G. van der Wall.

Additional information

Condensed form of a paper first presented at the 5th Decennial AHS Aeromechanics Specialists’ Conference, San Francisco, CA, USA, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Wall, B.G., Bauknecht, A., Jung, S.N. et al. Semi-empirical modeling of fuselage–rotor interference for comprehensive codes: the fundamental model. CEAS Aeronaut J 5, 387–401 (2014). https://doi.org/10.1007/s13272-014-0113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-014-0113-4

Keywords

Navigation