Skip to main content
Log in

The influence of engine thrust behaviour on the aerodynamics of engine airframe integration

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

The wind tunnel is still an important pillar for the aerodynamic investigations of engine installation effects, such as the strong aerodynamic interferences between an underwing mounted engine and the wing itself. To consider real engine effects on the aerodynamics in the wind tunnel environment the turbine powered simulator (TPS) technique is one of the widely applied technologies. Especially for underwing installed engines thrust affects the aerodynamic drag. Reflecting the fact that in modern aircraft design engine installation improvements on drag counts in small numbers, and considering that the TPS technology cannot match the real engine in all parameters, the questions arises if no matching parameters exist what is their influence on drag. Usually fan Mach numbers and total thrust coefficients of the real engine can be correctly realized by TPS. In the present contribution the essential parameters of engine simulation are determined and in particular the thrust ratios, i.e. turbine thrust to fan thrust of real engines and simulators at different bypass ratios (BPR) in the range of 6–17 at cruise conditions will be evaluated. Considerable differences of the thrust ratios between the engines and the simulators exist in particular at high freestream Mach numbers. Therefore, the aim of this contribution will be to clarify the influence of the thrust ratio on the drag behaviour of an aircraft configuration. First, the theoretical background on the drag determination theory is derived. Based on this theory the analysis of the thrust ratio is done using mainly experimental results. Additional numerical results by solving the Reynolds-averaged Navier–Stokes equations are used to support the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. Simulators denoted with the number 2 are used for high-speed tests and are additionally equipped with pressure tapings on the nacelle surfaces.

  2. CRUF = counter rotating ultra high bypass fan.

Abbreviations

A W :

Wing reference area

A i :

Area at station i

BPR:

Bypass ratio

C TE :

Thrust coefficient of the engine

C TS :

Thrust coefficient of the simulator

C TN :

Net thrust coefficient

D :

Total drag force

EOC:

End of cruise

F N :

Net thrust force

F FN :

Net thrust force of the fan

F TN :

Net thrust force of the turbine

p i :

Static pressure at station i

p T :

Total pressure

q 0 :

Freestream dynamic pressure

R :

Gas constant R = 286.9 J/kg K

SOC:

Start of cruise

TFN:

Through flow nacelle

T t,i :

Total temperature at station i

T i :

Static temperature at station i

w i :

Axial velocity at station i

\( \varepsilon_{\text{FD}} \) :

Mass flow ratio

\( \dot{m}_{i} \) :

Mass flow at station i

\( \rho_{i} \) :

Density at station i

\( \kappa \) :

Specific heat ratio \( \kappa = 1.4 \)

ΔC D :

Installation drag coefficient

References

  1. Hoheisel, H.: The evolution to modern jet engines. In: Aeronautical Research in Germany—from Lilienthal until Today. Springer Berlin, Heidelberg, pp. 407–430 (2004)

  2. Rüd, K., Lichtfuss, H.J.: Trends in AERO-engines development. Aspects of engine–airframe integration for transport aircraft. In: Proceedings of the DLR Workshop Braunschweig. DLR Mitteilung (Note) pp. 96–01, (1996)

  3. Burgsmüller, W., Hoheisel, H., Kooi, J.W.: Engine/airframe interference on transport aircraft with ducted propfan—The European Research Program DUPRIN. In: AIAA Congress of ICAS—94-6.2.1 (1994)

  4. Hoheisel, H.: Aerodynamic aspects of engine–aircraft integration of transport aircraft. Aerosp. Sci. Technol. 7, 475–487 (1997)

    Article  Google Scholar 

  5. Burgsmüller, W., Hoheisel, H.: ENIFAIR-EU-Research into engine integration on future transport aircraft. Air & Space Europe, vol. 2 (2000)

  6. Rudnik, R., Rossow. C.C.: Numerical simulation of engine/airframe integration for high-bypass engines. In: Contribution to ECCOMAS, Barcelona, 11–14 September 2000

  7. Meier, H.U., Green, J.E. (eds.): International Forum on Turbine Powered Simulation. DNW/NL, 16/17 May 1995

  8. Hoheisel, H.: Investigations on the Aerodynamic Interference Effects of Wing-Mounted Advanced Engines—Analysis of High-Speed Test Results. DLR-FB 2002-20, 2002

  9. Kooi, J.W.; Kiock, R.; Slauerhoff, J.F.: Tools for the experimental study of the integration of ultra-high bypass engines on transport aircraft. In: 18th AIAA Aerospace Ground Testing Conference, June 1994/Colorado Springs, CO, AIAA-Paper 94-2562

  10. Puffert-Meißner, W.: The development and use of model hardware. In: Proceedings of the Workshop on EU-Research on Aerodynamic Engine/Aircraft Integration for Transport Aircraft. DLR Braunschweig, 26/27 September 2000

  11. Hoheisel, H.: The Design of a Counter Rotating Ultra-High-Bypass Fan Simulator for Windtunnel Investigations. DLR-FB 93-20 (1993)

  12. Rossow, C.C., Hoheisel, H.: Numerical study of interference effects of wing-mounted advanced engine concepts. In: AIAA Congress of ICAS 94-6.4.1 (1994)

  13. Godard, J.L., Hoheisel, H., Rossow, C.C., Schmitt, V.: Investigations of interference effects for different engine positions on a transport aircraft configuration. Aspects of engine–airframe integration for transport aircraft. In: Proceedings of the DLR Workshop Braunschweig. DLR Mitteilung (Note) 96-01 (1996)

  14. Brodersen, O.: Numerische Analyse der aerodynamischen Triebwerksinstallations-effekte an Transportflugzeugen. Dissertation TU Braunschweig, 2003. DLR-FB 2003-10 (2003)

  15. von Geyr, H.Frhr.: Hoheisel, H., Rossow, C.-C.: Numerical and experimental study of aerodynamic engine/airframe interference effects for engines with different bypass ratios. In: Contribution to the CEAS Aerospace Aerodynamics Research Conference, Cambridge, UK, 10–12, June 2002

  16. Riedel, H.: Einige Aspekte der Zellen-Triebwerksinterferenz bei Heckkörpern und Triebwerksgondeln unter Berücksichtigung des Heckwiderstandes. DGLR-Jahrbuch (1980)

  17. Korus, A.: Experimentelle und theoretische Untersuchungen über den Strahleinfluss bei der Umströmung eines Bypass-Triebwerks. DLR-FB 93-17 (1993)

  18. von Geyr, H.Frhr.: Ein Verfahren zur genauen Schubbestimmung von Modelltriebwerken im Windkanal. Dissertation TU Braunschweig, 2004, DLR-FB 2004-26 (2004)

  19. Hoheisel, H.: Engine thrust determination for wind tunnel experiments. In: Proceedings of the Workshop on EU-Research on Aerodynamic Engine/Aircraft Integration for Transport Aircraft. DLR Braunschweig, 26–27 September 2000

  20. Grieb, H.: Projektierung von Turboflugtriebwerken. Birkhäuser, Basel (2004)

    Book  Google Scholar 

  21. Haftmann, B., Debbeler, H., Gielen, H.: Take-off drag prediction for Airbus A300–600 and A310 compared with flight test results. AIAA J. Aircr. 25(12), 1088–1096 (1988)

    Article  Google Scholar 

  22. Kroll, N., Rossow, C.C., Becker, K., Thiele, F.: The MEGAFLOW-Project. J. Aerosp. Sci. Technol. 4, 223–237 (2000)

    Article  MATH  Google Scholar 

  23. Pflug, M., Haberland, Ch.: On numerical jet flow simulation of current and future high by-pass engines. Aspects of engine–airframe integration for transport aircraft. In: Proceedings of the DLR Workshop Braunschweig, DLR Mitteilung (Note) 96-01 (1996)

  24. Hoheisel, H., Bütefisch, K.A., Lehmann, B., Henke, R., Roscher, H.J., Seelhorst, U.: The jet behaviour of an actual high-bypass engine as determined by LDA-measurements in ground tests. In: AGARD Conference Proceedings 498 (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Frhr. von Geyr.

Additional information

H. Hoheisel is retired and was formerly branch head of “Propulsion Integration”. H. Frhr. von Geyr is branch head of “Transport Aircraft”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoheisel, H., Frhr. von Geyr, H. The influence of engine thrust behaviour on the aerodynamics of engine airframe integration. CEAS Aeronaut J 3, 79–92 (2012). https://doi.org/10.1007/s13272-012-0044-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-012-0044-x

Keywords

Navigation