Skip to main content
Log in

A cross-contamination-free SELEX platform for a multi-target selection strategy

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Multi-target aptamer selection, known as multiplex systematic evolution of ligands by exponential enrichment (SELEX), is rapidly drawing interest because of its potential to enable high-speed, high-throughput aptamer selection. The parallelization of chemical processes by integrating microfluidic unit operations is a key strategy for developing a multiplex SELEX process. One of the potential problems with on-chip multiplexing chemical processes is cross-contamination. In order to avoid this, we propose a microfluidic network platform that uses pneumatic valves to allow the serial loading and incubation of aptamers with sol-gel entrapped target proteins. After target binding inside the sol-gels, the cross-contamination-free parallel elution of specifically bound aptamers is performed. The platform allows selective binding with five different targets immobilized in sol-gel spots. When eluting bound species, cross-contamination is avoided by sealing the adjacent elution chambers from each other using the pneumatic microvalves. Consequently, we demonstrate specific aptamer binding to the respective protein target and subsequent aptamer elution without any cross-contamination. This proof of concept opens the way to increased automation and microscale parallel processing of the SELEX methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gold, L. et al. From oligonucleotide shapes to genomic SELEX: Novel biological-regulatory-loops. Proc. Natl. Acad. Sci. USA 94, 59–64 (1997).

    Article  CAS  Google Scholar 

  2. Shi, H. et al. RNA aptamers as effective protein antagonists in a multicellular organism. Proc. Natl. Acad. Sci. USA 96, 10033–10038 (1999).

    Article  CAS  Google Scholar 

  3. Tuerk, C. & MacDougal-Waugh, S. In vitro evolution of functional nucleic acids: high-affinity RNA ligands of HIV-1 proteins. Gene 137, 33–39 (1993).

    Article  CAS  Google Scholar 

  4. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  Google Scholar 

  5. Jo, M. et al. Development of single-stranded DNA aptamers for specific Bisphenol a detection. Oligonucleotides 21, 85–91 (2011).

    Article  CAS  Google Scholar 

  6. Ahn, J.Y. et al. Aptamer microarray mediated capture and mass spectrometry identification of biomarker in serum samples. J. Proteome. Res. 9, 5568–5573 (2010).

    Article  CAS  Google Scholar 

  7. Jenison, R.D. et al. High-resolution molecular discrimination by RNA. Science 263, 1425–1429 (1994).

    Article  CAS  Google Scholar 

  8. Ahn, J.Y. et al. Selection of aptamers in SELEX process. Toxicol. Environ. Health Sci. 1, 1–7 (2009).

    Article  Google Scholar 

  9. Fan, X. et al. Probing TBP interactions in transcription initiation and reinitiation with RNA aptamers that act in distinct modes. Proc. Natl. Acad. Sci. USA 101, 6934–6939 (2004).

    Article  CAS  Google Scholar 

  10. Kwon, J. et al. High diagnostic accuracy of antigen microarray for sensitive detection of hepatitis C virus infection. Clin. Chem. 54, 424–428 (2008).

    Article  CAS  Google Scholar 

  11. Hybarger, G. et al. A microfluidic SELEX prototype. Anal. Bioanal. Chem. 384, 191–198 (2006).

    Article  CAS  Google Scholar 

  12. Lou, X. et al. Micromagnetic selection of aptamers in microfluidic channels. Proc. Natl. Acad. Sci. USA 106, 2989–2994 (2009).

    Article  CAS  Google Scholar 

  13. Ahn, J.Y. et al. A sol-gel-based microfluidics system enhances the efficiency of RNA aptamer selection. Oligonucleotides 21, 93–100 (2011)

    Article  CAS  Google Scholar 

  14. Park, S.M. Selection and elution of aptamers using nanoporous sol-gel arrays with integrated microheaters. Lab. Chip 9, 1206–1212 (2009).

    Article  CAS  Google Scholar 

  15. Thorsen, T. et al. Microfluidic large scale integration. Science 298, 580–584 (2002).

    Article  CAS  Google Scholar 

  16. Hong, J.W. et al. Integrated nanoliter systems. Nat. Biotechnol. 21, 1179–1183 (2003).

    Article  CAS  Google Scholar 

  17. Jeong, O. & Konishi, S. Pneumatic gas regulator with cascaded PDMS seal valves. Sens. Acts. A 143, 84–89 (2008).

    Article  Google Scholar 

  18. Gill, I. & Ballesteros, A. Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulated biologicals. Trends in Biotechnology 18, 282–296 (2000).

    Article  CAS  Google Scholar 

  19. Ahn, J.Y. et al. Sol-gel material optimization for aptamer biosensors. Mol. Cell. Toxicol. 4, 100–105 (2008).

    Google Scholar 

  20. Frenkel-Mullerad, H. & Avnir, D. Sol-gel materials as efficient enzyme protectors:? Preserving the activity of phosphatases under extreme pH conditions. J. Am. Chem. Soc. 127, 8077–8081 (2005).

    Article  CAS  Google Scholar 

  21. Shi, H. et al. RNA aptamers directed to discrete functional sites on a single protein structural domain. Proc. Natl. Acad. Sci. USA 104, 3742–3746 (2007).

    Article  CAS  Google Scholar 

  22. Sevilimedu, A. et al. TFIIB aptamers inhibit transcription by perturbing PIC formation at distinct stages. Nucleic Acids Res. 36, 3118–3127 (2008).

    Article  CAS  Google Scholar 

  23. Mallik, P.K. et al. Commandeering a biological pathway using aptamer-derived molecular adaptors. Nucleic Acids Res. 38, e93 (2010).

    Article  Google Scholar 

  24. Zhao, X. et al. An RNA aptamer that interferes with the DNA binding of the HSF transcription activator Nucleic Acids Res. 34, 3755–3761 (2006).

    Article  CAS  Google Scholar 

  25. Kim, S. et al. Improved sensitivity and physical properties of sol-gel protein chips using large-scale material screening and selection. Anal. Chem. 78, 7392–7396 (2006).

    Article  CAS  Google Scholar 

  26. Lee, S. et al. Chip-based detection of hepatitis C virus using RNA aptamers that specifically bind to HCV core antigen. Biochem. Biophys. Res. Commun. 358, 47–52 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Laurell, Soyoun Kim or Ok Chan Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Kang, J., Ren, S. et al. A cross-contamination-free SELEX platform for a multi-target selection strategy. BioChip J 7, 38–45 (2013). https://doi.org/10.1007/s13206-013-7106-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-013-7106-y

Keywords

Navigation