Skip to main content
Log in

A new system using Solanum tuberosum for the co-cultivation of Glomus intraradices and its potential for mass producing spores of arbuscular mycorrhizal fungi

  • Short Communication
  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Freshly harvested potato tubers, Solanum tuberosum var ‘Pukhraj’, were inoculated for transformation with Agrobacterium rhizogenes strain Ri1600. Hairy roots were formed after 8 days of co-cultivation and the transformation efficiency was 40 %. The transformants were transferred from Murashige and Skoog medium (MS) to Modified White’s medium (MW) and finally on a hormone-free minimal medium (M). The putative transformants were confirmed using rolA and rolB gene specific primers for the polymerase chain reaction (PCR) analysis. The root inducing (Ri) T-DNA transformed potato roots were co-cultured with Glomus intraradices (CMCCROC7) to obtain arbuscular mycorrhizal root organ cultures (AM-ROC dual cultures), which were used for studying the symbiosis with Glomus intraradices and the potential for spore production in vitro. Sporulation was comparable with the existing in vitro carrot-dual culture system. Around 60,250 spores/jar could be harvested with around 38,314 extraradical spores/jar and around 21,936 intraradical spores/jar. The new method using potato is certainly promising for the mass production of mycorrhizal biofertilizers. The viability of the spores when tested on potato roots was nearly 100 % and more than half of the roots were colonized 12 weeks after inoculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

AM:

Arbuscular mycorrhiza

AMF:

Arbuscular mycorrhizal fungus

CMCC:

Centre for Mycorrhizal Culture Collection

CTAB:

Cetyl trimethyl ammonium bromide

INT:

Indo nitro tetrazolium

M:

Minimal medium

MS:

Murashige and Skoog medium

MTT:

3-(4,5-dimethyl–2–thiazolyl)-2,5-diphenyl-2H- tetrazolium bromide

MW:

Modified White’s medium

NBT:

Nitro blue tetrazolium

PCR:

Polymerase chain reaction

Ri:

Root inducing

ROC:

Root organ culture

SPSS:

Statistical package for the social sciences

T-DNA:

Transfer DNA

VAM:

Vesicular arbuscular mycorrhiza

YMA:

Yeast mannitol agar

YMB:

Yeast mannitol broth

References

  • Al-Karaki GN, Al-Raddad A (1997) Effects of arbuscular fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in their drought resistance. Mycorrhiza 7:83–88

    Article  CAS  Google Scholar 

  • An Z-Q, Hendrix JW (1988) Determining viability of endogonaceous spores with a vital stain. Mycologia 80:259–261

    Article  Google Scholar 

  • Arican E, Gozukirmiz N, Bajrovic K, Gozukirmizi N (1997) Transformation of potato and tobacco via Agrobacterium rhizogenes. Acta Hort (ISHS) 447:321–322, http://www.actahort.org/books/447/447_64.htm

    Google Scholar 

  • Atkinson D, Baddeley JA, Goicoechea N, Green J, Sánchez-Díaz M, Watson CA (2002) Arbuscular mycorrhizal fungi in low input agriculture. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 211–222

    Chapter  Google Scholar 

  • Bagyaraj DJ (1984) Biological interactions with VA mycorrhizal fungi. In: Powell CL, Bagyaraj DJ (eds) VA Mycorrhiza. CRC Press, Boca Raton, Florida, USA, pp 131–153

    Google Scholar 

  • Banta LM, Montenegro M (2008) Agrobacterium and Plant Biotechnology. In: Tzfira T, Citovsky V (eds) Agrobacterium: from Biology to Biotechnology. Springer, New York, New York, pp 73–148

    Google Scholar 

  • Baylis GTS (1959) Effect of Vesicular arbuscular mycorrhizas on growth of Griselinia littoralis (Cornaceae). New Phytol 58:274–280

    Article  Google Scholar 

  • Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. London. Academic Press, London, pp 373–389

    Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Birnboim HC, Dolly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acid Res 7:1513–1523

    Article  CAS  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Hairy roots of Medicago trunculata as tools for studying nitrogen-fixing and endomycorrhizal symbiosis. Mol Plant – Microbe Interact 14:693–700

    Google Scholar 

  • Brown MS, Bethlenfalvay GJ (1988) The Glycine-Glomus Rhizobium symbiosis. VII. Photosynthetic nutrient use efficiency in nodulated mycorrhizal soybeans. Plant Physiol 86:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizalassociations. Biol Rev 79:473–495

    Article  PubMed  Google Scholar 

  • Caron M (1989) Potential use of mycorhizae in control of soil-borne diseases. Can J Plant Pathol 11:177–179

    Article  Google Scholar 

  • Chandra S, Kehri HK (2006) Biotechnology of VA Mycorrhiza: Indian scenario. New India Publishing Agency, New Delhi

    Google Scholar 

  • Chen BD, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846

    Article  PubMed  CAS  Google Scholar 

  • Davies FT, Porter JR, Lindermann RG (1993) Drought resistance of mycorrhizal pepper plants-independent of leaf phosphorus concentration, response in gas exchange and water relations. Physiol Plant 87:45–53

    Article  CAS  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1996) In vitro mass production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237–1242

    Article  Google Scholar 

  • Declerck S, D’OrD CS, Le Boulende’ E (2001) Modelling the sporulation dynamics of arbuscular mycorrhizal fungi in monoxenic culture. Mycorrhiza 11:225–230

    Article  Google Scholar 

  • Dobigny A, Tizroutine S, Gaisne C, Haïcour R, Rossignol L, Ducreux G, Sihachakr D (1996) Direct regeneration of transformed plants from stem fragments of potato inoculated with Agrobacterium rhizogenes. Plant Cell Tiss Org Cult 45:115–121

    Article  CAS  Google Scholar 

  • Doner LW, Bécard G (1991) Solubilization of gellan gels by chelation of cations. Biotech Tech 5:25–28

    Article  CAS  Google Scholar 

  • Dupré de Boulois H, Voets L, Delvaux B, Jacobsen I, Declerck S (2006) Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions. Environ Microbiol 8:1926–1934

    Article  Google Scholar 

  • Elsen A, Baimey H, Swennen R, De Waele D (2003) Relative mycorrhizal dependency and mycorrhiza-nematode interaction in banana cultivars (Musa spp.) differing in nematode susceptibility. Plant Soil 256:303–313

    Article  CAS  Google Scholar 

  • Farmer AM (1985) The occurrence of vesicular-arbuscular mycorrhiza in isoetid-type submerged aquatic macrophytes under naturally varying conditions. Aquat Bot 21:245–249

    Article  Google Scholar 

  • Fitter AH (2004) Magnoloid roots – hairs, architecture and mycorrhizal dependency. New Phytol 164:15–16

    Article  Google Scholar 

  • Fortin JA, Bécard G, Declerck S, Dalpé Y, St Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhizae on root organ cultures: A review. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Gianinazzi S, Trouvelot A, Gianinazzi-Pearson V (1990) Role and use of mycorrhizas in horticultural crop production. Adv Hort Sci 4:25–30

    Google Scholar 

  • Guar A, Guar A, Adholeya A (2000) Growth and flowering in Petunia hybrid, Callistephus chinensis and Impatiens balsamina inoculated with mixed AM inocula or chemical fertilizers in a soil of low P fertility. Sci Hortic 84:151–162

    Article  Google Scholar 

  • Hamel C, Fyles H, Smith DL (1990) Measurement of Development of Endomycorrhizal Mycelium Using Three Different Vital Stains. New Phytol 115:297–302

    Article  Google Scholar 

  • Hashem EA (2009) Estimation of the endogenous auxins and cytokinins in hairy roots incited on Solanum dalcamara plants by Ri plasmid of Agrobacteriun rhizogenes. Aust J Basic Appl Sci 3:142–147

    CAS  Google Scholar 

  • Hayman DS (1978) Mycorrhizal populations of sown pastures and native vegetation in Otago, New Zealand. N Z J Agric Res 21:271–276

    Article  Google Scholar 

  • http://www.teriin.org/index.php?option =com_content&task = view&id = 66. Accessed 26 December 2011

  • IJdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16

    Article  PubMed  CAS  Google Scholar 

  • Koffi MC, de la Providencia IE, Elsen A, Declerck S (2009) Development of an in vitro culture system adapted to banana mycorrhization. African J Biotech 8:2750–2756

    Google Scholar 

  • Kormanik PP, Bryan WC, Schultz RC (1980) Procedure and equioment for staining large numbers of plant roots for endomycorrhizal assay. Can J Microbiol 26:535–538

    Article  Google Scholar 

  • Kumar V, Sharma A, Prasad BCN, Gururaj HB, Ravishankar GA (2006) Agrobacterium rhizogenes mediated genetic transformation resulting in hairy root formation is enhanced by ultrasonication and acetosyringone treatment. Elect J Biotech 9:349–357

    Google Scholar 

  • Mehrotra VS (2005) Mycorrhiza: role and applications. Allied Publishers, New Delhi

    Google Scholar 

  • Mosse B, Hepper CM (1975) Vesicular-arbuscular infections in root-organ cultures. Physiol Plant Pathol 5:215–233

    Article  Google Scholar 

  • Mugnier J (1988) Establishment of new hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7:9–12

    Article  Google Scholar 

  • Mugnier J, Mosse B (1987) Vesicular arbuscular mycorrhizal infections in transformed Ri T-DNA roots grown axenically. Phytopathol 77:1045–1050

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucl Acid Res 8:4221–4235

    Article  Google Scholar 

  • Nemec S (1978) Response of six citrus rootstocks to three species of Glomus, a mycorrhizal fungus. Proc Fla State Hort Soc 91:10–14

    Google Scholar 

  • Nogales A, Camprubu A, Estaun V, Marfa V, Calvet C (2010) In vitro interaction studies between Glomus intraradices and Armillaria mellea in vines. Spanish J Agri Res 8:S62–S68

    Google Scholar 

  • Ondrej M, Hrouda M, Kostrica P (1989) Potato transformation by Agrobacterium rhizogenes Ri plasmid. Biol Plant 31:312–314

    Article  Google Scholar 

  • Petit A, Tempé J (1978) Isolation of Agrobacterium Ti plasmid regulatory mutants. Mol Gen Genet 167:147–155

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Trans Br Mycol Soc 55:159–161

    Article  Google Scholar 

  • Rostampour S, Sohi HH, Jourabchi E, Ansari E (2009) Influence of Agrobacterium rhizogenes on induction of hairy roots and benzylisoquinoline alkaloids production in Persian poppy (Papaver bracteatum Lindl.): preliminary report. World J Microbiol Biotech 25:1807–1814

    Article  Google Scholar 

  • Rufyikiri G, Thiry Y, Declerck S (2003) Contribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root-organ culture conditions. New Phytol 158:391–399

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning, A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schmülling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629

    PubMed  Google Scholar 

  • Silva FSB, Yano-Melo MA, Brandao JAC, Maia LC (2002) Sporulation of arbuscular mycorrhizal fungi using Tris–HCl buffer in addition to nutrient solutions. Brazilian J Microbiol 36:327–332

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Stadtländer C (2007) Scanning electron microscopy and transmission electron microscopy of mollicutes: challenges and opportunities. Mod Res Educ Top Microsc 1:122–131

    Google Scholar 

  • ten Cate H, Ennik E, Roest S, Ramulu KS, Dijkhuis P, de Groot B (1988) Regeneration and characterization of plants from potato root lines transformed by Agrobacterium rhizogenes. Theor Appl Genet 75:452–459

    Article  Google Scholar 

  • Tenea GN, Calin A, Gavrila L, Cucu N (2008) Manipulation of root biomass and biosynthetic potential of Glycyrrhiza glabra L. plants by Agrobacterium rhizogenes mediated transformation. Rom Biotech Lett 13:3922–3932

    CAS  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype. Cell 37:959–967

    Article  PubMed  CAS  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146

    Article  CAS  Google Scholar 

  • Tiwari P (2004) Identification of factors responsible for optimum arbuscular mycorrhizal symbiosis in vitro: Development of model approach towards mass production. PhD Thesis, Barkatullah University, Bhopal, India

  • Tiwari P, Adholeya A (2002) In vitro co-culture of two AMF isolates Gigaspora margarita and Glomus intraradices on Ri T- DNA transformed roots. FEMS Microbiol Lett 206:39–43

    Article  PubMed  CAS  Google Scholar 

  • Tiwari P, Adholeya A (2003) Host dependent differential spread of Glomus intraradices on various Ri T- DNA transformed roots in vitro. Mycol Progress 2:171–177

    Article  Google Scholar 

  • Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125:393–404

    CAS  Google Scholar 

  • Visser RGF, Jaconsen E, Witholt B, Feenstr WJ (1989) Efficient transformation of potato (Solanum tuberosum L.) using a binary vector in Agrobacterium rhizogenes. Theor Appl Genet 78:594–600

    Article  CAS  Google Scholar 

  • Voets L, Dupre de Boulois H, Renard L, Strullu DG, Declerck S (2005) Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett 248:111–118. doi:10.1016/j.femsle.2005.05.025

    Article  PubMed  CAS  Google Scholar 

  • Voets L, de la Providencia IE, Fernandez K, IJdo M, Cranenbrouck S, Declerck S (2009) Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19:347–356

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr R K Pachauri, Director General, TERI, for providing the necessary infrastructure and a conducive environment for research. Financial contribution of Council of Scientific and Industrial Research, India and partly by Department of Biotechnology, Government of India is acknowledged. The copy editing by Yateendra Joshi and SEM analysis carried by Chandrakant Tripathi, TERI is also acknowledged. The authors thank two anonymous reviewers for very valuable comments and help with editing and improvement of the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Adholeya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puri, A., Adholeya, A. A new system using Solanum tuberosum for the co-cultivation of Glomus intraradices and its potential for mass producing spores of arbuscular mycorrhizal fungi. Symbiosis 59, 87–97 (2013). https://doi.org/10.1007/s13199-012-0213-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-012-0213-z

Keywords

Navigation