Skip to main content
Log in

An introduction to functional data analysis and a principal component approach for testing the equality of mean curves

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

An Addendum to this article was published on 15 December 2015

Abstract

We give an introduction to functional data analysis, with examples, and provide a brief review of the literature. We explain how principal component analysis (PCA) can be used to transform curves into finite dimensional data. An application of PCA is developed to test for the equality of the means of several populations (functional analysis of variance). Asymptotics are derived under the null hypothesis that the populations have the same mean curves. The selection of the basis for the projections and the power of the test is discussed for simple random samples and stationary time series samples of curves. We review the part of the literature which is needed to establish the validity of the PCA method. Two data sets, magnetogram records and stock returns, are used to illustrate the applicability of our limit results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abramovich, F., Angelini, C.: Testing in mixed-effects FANOVA models. J. Stat. Plan. Inference 136, 4326–4348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 3rd edn. Wiley, New York (2003)

    MATH  Google Scholar 

  3. Andrews, D.: Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59, 817–858 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antoniadis, A., Sapatinas, T.: Estimation and inference in functional mixed-effect models. Comput. Stat. Data Anal. 51, 4793–4813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arcones, M.A., Giné, E.: On the bootstrap of \(U\) and \(V\) statistics. Ann. Stat. 20, 655–674 (1992)

    Article  MATH  Google Scholar 

  6. Aston, J., Kirch, C.: Detecting and estimating changes in dependent finctional data. J. Multivar. Anal. 109, 204–220 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aue, A., Hörmann, S., Horváth, L., Hušková, M., Steinebach, J.: Sequential testing for the stability of portfolio betas. Econom. Theory 28, 804–837 (2012)

    Article  MATH  Google Scholar 

  8. Aue, A., Horváth, L.: Structural breaks in time series. J. Time Ser. Anal. 23, 1–16 (2013)

    Article  Google Scholar 

  9. Bartlett, M.S.: Further aspects of the theory of multiple regression. In: Proceedings of the Cambridge Philosophical Society, vol. 34, pp. 33–40 (1938)

  10. Berkes, I., Horváth, L., Rice, G.: Weak invariance principals for sums of dependent random functions. Stoch. Process. Appl. 123, 385–403 (2013)

    Article  MATH  Google Scholar 

  11. Berkes, I., Horváth, L., Rice, G.: On the asymptotic normality of kernel estimators of the long run covariance of functional time series, (2015, preprint)

  12. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  13. Bollerslev, T.: Modeling the coherence in short run nominal exchange rates: a multivariate generalized ARCH model. Rev. Econ. Stat. 72, 498–505 (1990)

    Article  Google Scholar 

  14. Bosq, D.: Linear Processes in Function Spaces. Springer, New York (2000)

    Book  MATH  Google Scholar 

  15. Brown, M.B., Forsythe, A.B.: Robust tests for equality of variances. J. Am. Stat. Assoc. 69, 364–367 (1974)

    Article  MATH  Google Scholar 

  16. Bühlmann, P.: Blockwise bootstrapped empirical processes for stationary sequences. Annal. Stat. 22, 995–1012 (1994)

    Article  MATH  Google Scholar 

  17. Cardot, H., Ferraty, F., Mas, A., Sarda, P.: Testing hypothesis in the functional linear model. Scand. J. Stat. 30, 241–255 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cuesta-Albertos, J., Febrero, M.: A simple multiway ANOVA for functional data. Test 19, 537–557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cuevas, A.: A partial overview of the theory of statistics with functional data. J. Stat. Plan. Inference 147, 1–23 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cuevas, A., Febrero, M., Fraiman, R.: An anova test for functional data. Comput. Stat. Data Anal. 47, 111–122 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dauxois, J., Pousse, A., Romain, Y.: Asymptotic theory for the principal component analysis of a vector random function: some applications to statistical inference. J. Multiv. Anal. 12, 136–154 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Debnath, L., Mikusiński, P.: Hilbert Spaces with Applications, 3rd edn. Elsevier, New York (2005)

    Google Scholar 

  23. Dehling, H., Sharipov, O., Wendler, M.: Bootstrap for dependent Hilbert space-valued random variables with application to von Mises statistics. J. Multiv. Anal. 133, 200–215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Delicado, P., Giraldo, R., Comas, C., Mateu, J.: Statistics for spatial functional data: Some recent contributions. Environmetrics 21, 224–239 (2010)

    Article  MathSciNet  Google Scholar 

  25. Dunford, N., Schwartz, J.T.: Linear Operators: General Theory (Part 1). Springer, New York (1988)

    Google Scholar 

  26. Doukhan, P., Lang, G., Leucht, A. and Neumann, M.: Dependent wild bootstrap for empirical processes. J. Time Ser. Anal. (to appear, 2015)

  27. Ferraty, F., Romain, Y. (Eds): The Oxford Handbook of Functional Data Analysis. Oxford University Press, Oxford (2011)

  28. Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis: Theory and Practice. Springer, New York (2006)

    Google Scholar 

  29. Fremdt, S., Horváth, L., Kokoszka, P., Steinebach, J.G.: Functional data analysis with increasing number of projections. J. Multiv. Anal. 124, 313–332 (2014)

    Article  MATH  Google Scholar 

  30. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall, New York (1993)

    Book  MATH  Google Scholar 

  31. Gabrys, R., Kokoszka, P.: Portmanteau test of independence for functional observations. J. Am. Stat. Assoc. 102, 1338–1348 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Montoro, González, A, M., Cao, R., Espinosa, N., Cudeiro, J., Mariño, J.: Functional two-way analysis of variance and bootstrap methods for neural synchrony analysis. BMC Neurosci. 15, 96 (2014)

    Article  Google Scholar 

  33. Górecki, T., Smaga, L.: A comparison of tests for the one-way ANOVA problem for functional data. Comput. Stat. (to appear, 2015)

  34. Grenander, U., Rosenblatt, M.: Statistical spectral analysis of time series arising from stationary stochastic processes. Ann. Math. Stat. 24, 537–558 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  35. Grenander, U., Rosenblatt, M.: Statistical Analysis of Stationary Time Series. Wiley, New York (1957)

    MATH  Google Scholar 

  36. Gromenko, O., Kokoszka, P.: Testing the equality of mean functions of ionospheric critical frequency curves. J. R. Stat. Soc. Ser. C 61, 715–731 (2012)

  37. Gromenko, O., Kokoszka, P., Zhu, L., Sojka, J.: Estimation and testing for spatially distributed curves with application to ionospheric and magnetic field trends. Ann. Appl. Stat. 6(2012), 669–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hall, P., Hosseini-Nasab, M.: On properties of functional principal components. J. R. Stat. Soc. Ser. B 68, 109–126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hall, P., Von Keilegom, I.: Two-sample tests in functional data analysis starting from discrete data. Statistica Sinica 17, 1511–1531 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Hannan, E.J.: Multiple Time Series. Wiley, New York (1970)

    Book  MATH  Google Scholar 

  41. Hörmann, S., Horváth, L., Reeder, R.: A functional version of the ARCH model. Econ. Theory 29, 138–152 (2013)

    Article  Google Scholar 

  42. Hörmann, S., Kidziński, L., Hallin, M.: Dynamic functional principal components. J. R. Stat. Soc. Ser. B (in press, 2015)

  43. Hörmann, S., Kokoszka, P.: Weakly dependent functional data. Ann. Stat. 38, 1845–1884 (2010)

    Article  MATH  Google Scholar 

  44. Hörmann, S., Kokoszka, P.: Consistency of the mean and the principal components of spatially distributed functional data. Bernoulli 19, 1535–1558 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Horváth, L., Hušková, M., Kokoszka, P.: Testing the stability of the functional autoregressive processes. J. Multiv. Anal. 101, 352–367 (2010)

    Article  MATH  Google Scholar 

  46. Horváth, L., Hušková, Rice, G.: Test of independence for functional data. J. Multiv. Anal. 117, 100–119 (2013)

    Article  MATH  Google Scholar 

  47. Horváth, L., Kokoszka, P.: Inference for Functional Data with Applications. Springer, New York (2012)

    Book  MATH  Google Scholar 

  48. Horváth, L., Kokoszka, P., Reeder, R.: Estimation of the mean of of functional time series and a two sample problem. J. R. Stat. Soc. Ser. B 75, 103–122 (2013)

    Article  Google Scholar 

  49. Horváth, L., Kokoszka, P., Reimherr, M.: Two sample inference in functional linear models. Can. J. Stat. 37, 571–591 (2009)

    Article  MATH  Google Scholar 

  50. Horváth, L., Kokoszka, P., Rice, G.: Stationarity of functional time series. J. Econ. 179, 66–82 (2014)

    Article  MATH  Google Scholar 

  51. Horváth, L., Rice, G.: Extensions of some classical methods in change point analysis (with discussions). Test 23, 219–290 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Horváth, L., Rice, G.: Testing equality of means when the observations are from functional time series. J. Time Ser. Anal. 36, 84–108 (2015)

    Article  MATH  Google Scholar 

  53. Horváth, L., Rice, G., Whipple, S.: Adaptive bandwidth selection in the long run covariance estimator of functional time series. Comput. Stat. Data Anal. (in press, 2015)

  54. Ibragimov, I.A.: Some limit theorems for stationary processes. Theory Probab. Appl. 7, 349–382 (1962)

    Article  Google Scholar 

  55. Jirak, M.: On weak invariance principals for sums of dependent random functionals. Stat. Probab. Lett. 83, 2291–2296 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kokoszka, P., Miao, H., Zhang, X.: Functional dynamic factor model for intraday price curves. J. Financ. Econ. nbu004 (unpublished, 2014)

  57. Kokoszka, P., Reimherr, M.: Determining the order of the functional autoregressive model. J. Time Ser. Anal. 34, 116–129 (2013a)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kokoszka, P., Reimherr, M.: Asymptotic normality of the principal components of functional time series. Stoch. Process. Appl. 123, 1546–1562 (2013b)

    Article  MathSciNet  MATH  Google Scholar 

  59. James, G.S.: The comparision of several groups of observations when the ratios of population variances are unknown. Biometrika 38, 324–329 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  60. Krishnamoorthy, K., Lu, F.: A parametric bootstrap solution to the MANOVA under heteroscedasticity. J. Stat. Comput. Simul. 80, 873–887 (2009)

    Article  MathSciNet  Google Scholar 

  61. Krishnamoorthy, K., Lu, F., Mathew, T.: A parametric bootstrap approach for ANOVA with unequal variances: fixed and random models. Comput. Stat. Data Anal. 51, 5731–5742 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Laukaitis, A.: Functional analysis for cash flow and transaction intensity continous-time prediction using Hilbert-valued autoregressive processes. Eur. J. Op. Res. 185, 1607–1614 (2008)

    Article  MATH  Google Scholar 

  63. Laukaitis, A., Račkauskas, A.: Functional data analysis for clients segmentation task. Eur. J. Op. Res. 163, 210–216 (2005)

    Article  MATH  Google Scholar 

  64. Love, J.L.: Magnetic monitoring of Earth and space. In: Proceedings of Physics Today, pp. 31–37 (2008)

  65. Mas, A.: Weak convergence for the covariance operators of a Hilbertian linear process. Stoch. Process. Appl. 99, 117–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  66. Maslova, I., Kokoszka, P., Sojka, J., Zhu, L.: Removal of nonconstant daily variation by means of wavelet and functional data analysis. J. Geophys. Res. 114, A03202 (2009)

    Google Scholar 

  67. Maslova, I., Kokoszka, P., Sojka, J., Zhu, L.: Statistical significance testing for the association of magnetometer records at high-, mid- and low latitudes during substorm days. Planet. Space Sci. 58, 437–445 (2010a)

    Article  Google Scholar 

  68. Maslova, I., Kokoszka, P., Sojka, J., Zhu, L.: Estimation of Sq variation by means of multiresolution and principal component analyses. J. Atmos. Solar-Terr. Phys. 72, 625–632 (2010b)

    Article  Google Scholar 

  69. Maslova, I., Kokoszka, P., Sojka, J., Zhu, L.: Statistical significance testing for the association of magnetometer records at high-, mid- and low latitudes during substorm days. Planet. Space Sci. 58, 437–445 (2010c)

    Article  Google Scholar 

  70. Müller, H.G., Sen, R., Stadtmüller, U.: Functional data analysis for volatility. J. Econ. 165, 233–245 (2011)

    Article  Google Scholar 

  71. Onatski, A., Kargin, V.: Curve forecasting by functional autoregression. J. Multiv. Anal. 99, 2508–2526 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  72. Parzen, E.: On choosing an estimate of the spectral density function of a stationary time series. Ann. Math. Stat. 28, 921–932 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  73. Pillai, K.C.S.: Upper percentage points of the largest root of a matrix in multivariate analysis. Biometrika 54, 189–193 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  74. Politis, D.N.: Adaptive bandwidth choice. J. Nonparametr. Stat. 25, 517–533 (2003)

    Article  MathSciNet  Google Scholar 

  75. Politis, D.N., Romano, J.: Limit theorem for weakly dependent Hilbert space valued random variables with application to the stationary bootstrap. Statistica Sinica 4, 461–476 (1994)

    MathSciNet  MATH  Google Scholar 

  76. Priestley, M.: Spectral Analysis of Time Series, vol. 1. Academic Press, New York (1981)

    Google Scholar 

  77. Rady, E.A., Kilany, N.M., Eliwa, S.A.: Estimation in mixed-effects functional ANOVA models. J. Multivar. Anal. 133, 346–355 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sharipov, O., Tewes, J., Wendler, M.: Sequential bootstrap in a Hilbert space with application to change point analysis, (preprint, 2014)

  79. Ramsay, J.O., Silverman, B.W.: Applied Functional Data Analysis. Methods and Case Studies. Springer, New York (2002)

    MATH  Google Scholar 

  80. Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer, New York (2005)

    Book  Google Scholar 

  81. Rice, W.R., Gaines, S.D.: One-way analysis of variance with unequal variances. Proc. Natl. Acad. Sci. 86, 8183–8184 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  82. Roy, S.N.: Some Aspects of Multivariate Analysis. Wiley, New York (1957)

    Google Scholar 

  83. Scheffé, H.: The Analysis of Variance. Wiley, New York (1959)

    MATH  Google Scholar 

  84. Taniguchi, A., Kakizawa, Y.: Asymptotic Theory of Statistical Inference for Time Series. Springer, New York (2000)

    Book  MATH  Google Scholar 

  85. Ullah, S., Finch, C.F.: Applications of functional data analysis: a systematic review. BMC Med. Res. Methodol. 13, 43 (2013)

    Article  Google Scholar 

  86. Xu, W.-Y., Kamide, Y.: Decomposition of daily geomagnetic variations by using method of natural orthogonal component. J. Geophys. Res. 109, A05218 (2004)

    Google Scholar 

  87. Weerahandi, S.: ANOVA under unequal variances. Biometrics 51, 589–599 (1995)

    Article  Google Scholar 

  88. Welch, B.L.: The generalization of Student’s problem when several different population variances are involved. Biometrika 34, 28–35 (1947)

    MathSciNet  MATH  Google Scholar 

  89. Welch, B.L.: On the comparison of several mean values: an alternative approach. Biometrika 38, 330–336 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  90. Wilks, S.S.: Certain generalizations of the analysis of variance. Biometrika 24, 471–494 (1932)

    Article  Google Scholar 

  91. Zhang, J.-T.: Analysis of Variance for Functional Data. Chapman & Hall/CRC, New York (2013)

    Google Scholar 

  92. Zhang, J.-T., Liang, X.: One-way ANOVA for functional data via globalizing the pointwise \(F\)-test. Scand. J. Stat. 41, 51–71 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lajos Horváth.

Additional information

Research supported by NSF Grant DMS 0905400.

Appendix: Technical lemmas

Appendix: Technical lemmas

The results in this section are taken from [52], where their proofs are also given.

Suppose in this section that \(\mathbf{Z}_1,\ldots ,\mathbf{Z}_k\) are independent normal random vectors in \(\mathbb {R}^d\) so that \(E \mathbf{Z}_i = \mathbf{0}\) for all \(1\le i\le \), and

$$\begin{aligned} E{\mathbf{Z}_i \mathbf{Z}_i^T} = {\varvec{\Sigma }}_i,\;\; 1\le i \le k. \end{aligned}$$

Define

$$\begin{aligned} {\varvec{\zeta }}=\left( \sum _{\ell =1}^k c_{\ell } {\varvec{\Sigma }}_{\ell }^{-1}\right) ^{-1} \sum _{\ell =1}^k c_{\ell }^{1/2} {\varvec{\Sigma }}_{\ell }^{-1}\mathbf{Z}_\ell , \end{aligned}$$

where \(c_i, 1\le i\le k\) satisfy

$$\begin{aligned} \sum _{i=1}^k c_i =1,\;\;\hbox {and}\;\;\;c_i > 0\hbox { for all } 1\le i \le k. \end{aligned}$$

We recall that \(\chi ^2(r)\) stands for a \(\chi ^2\) random variable with \(r\) degrees of freedom.

Lemma 9.1

If

$$\begin{aligned} T=\sum _{\ell =1}^k (\mathbf{Z}_\ell - c_{\ell }^{1/2} {\varvec{\zeta }})^T {\varvec{\Sigma }}_\ell ^{-1}(\mathbf{Z}_\ell - c_{\ell }^{1/2} {\varvec{\zeta }}), \end{aligned}$$

then

$$\begin{aligned} T \mathop {=}\limits ^{{\mathcal {D}}} \chi ^2(d(k-1)). \end{aligned}$$

Lemma 9.2

Let \(Y(t)\in L^2\) with \(EY(t)=0, E\Vert Y\Vert ^2<\infty \) and \(H(t,s)=EY(t)Y(s)\) be a strictly positive function and \(\{\psi _i, 1\le i <\infty \}\) be orthonormal functions. Then for any \(1\le d <\infty \) the matrix \(\mathbf{C}=\{E\langle Y,\psi _i\rangle \langle Y,\psi _j\rangle , 1\le i,j\le d\}\) is nonsingular.

Lemma 9.3

We assume \(m\ge 1, g_1, g_2, \ldots ,g_m\in L^2, b_1, b_2, b_m\) are non-negative numbers and \(U(t,s)\) is a symmetric positive definite function with eigenvalues \(\gamma _1>\gamma _2> \cdots >\gamma _\ell >\gamma _{\ell +1}\ge \cdots 0\) and corresponding orthonormal eigenfunctions \(\psi _1, \psi _2, \ldots \) Let

$$\begin{aligned} U^*(t,s)=\sum _{i=1}^mb_ig_i(t)g_i(s)+U(t,s), \end{aligned}$$

with eigenvalues \(\gamma _1^*\ge \gamma _2^*\ge \ldots \ge 0\) and corresponding orthonormal eigenfunctions \(\psi _1^*, \psi _2^*, \ldots .\) If

$$\begin{aligned} \max _{1\le i\le m}b_i\Vert g_i\Vert ^2>{\uplambda }_\ell , \end{aligned}$$

then with some \(j=1,2, \ldots , \ell \) and \(i=1,2,\ldots , m\) we have that

$$\begin{aligned} \langle \psi _j^*, g_i\rangle \ne 0. \end{aligned}$$
(9.1)

We assume that

$$\begin{aligned} \psi _1, \psi _2, \ldots ,\psi _m\;\;\hbox {are orthonormal functions} \end{aligned}$$
(9.2)

and

$$\begin{aligned} e_1>e_2>\ldots >e_m>0. \end{aligned}$$
(9.3)

Let \({\mathcal {A}}_0=\hbox {span}(\psi _1, \psi _2, \ldots ,\psi _m)\). We recall that \(\bar{\mathcal {B}}\) denotes the orthogonal complement of the set \({\mathcal {B}}\). Assume that

$$\begin{aligned} D\;\;\hbox {is symmetric, square integrable on}\;\;[0,1]^2\;\;\hbox {and non negative definite}. \end{aligned}$$
(9.4)

We say that \(D\) has regular maxima of order \(n\) with respect to \({\mathcal {A}}_0\) if there are \(r_1>r_2>\cdots >r_n\) and orthonormal function \(g_1, g_2, \ldots , g_n\) such that

$$\begin{aligned} r_i= & {} \sup _{g\in \bar{{\mathcal {A}}}_{i-1}: \Vert g\Vert =1}\int \!\int g(t)D(t,s)g(s)dtds\nonumber \\&=\int \!\int g_i(t)D(t,s)g_i(s)dtds,\;\;1\le i \le n, \end{aligned}$$

with \({\mathcal {A}}_{i}=\hbox {span}(\psi _1, \ldots , \psi _m, g_1, \ldots ,g_{i}),1\le i \le n-1.\) The functions \(g_1, \ldots , g_n\) are unique up to signs. Let

$$\begin{aligned} D_M(t,s)=M\sum _{i=1}^me_i\psi _i(t)\psi _i(s)+D(t,s), \;\;0\le t,s\le 1. \end{aligned}$$

Since \(D_M\) is symmetric, non negative definite there are \({\uplambda }_{1,M}\ge {\uplambda }_{2,M}\ge \dots \ge 0\) and orthonormal functions \(f_{1,M}, f_{2,M}, \ldots \) such that

$$\begin{aligned} {\uplambda }_{i,M}f_{i,M}(t)=\int D_M(t,s)f_{i,M}(s)ds. \end{aligned}$$

Lemma 9.4

If (9.2)–(9.4) hold and \(D\) has regular maxima of order \(n\) with respect to \({\mathcal {A}}_0\), then, as \(M\rightarrow \infty \) we have

$$\begin{aligned}&\max _{1\le i \le m}\Vert f_{i,M}-{c}_i\psi _i\Vert =o(1), \end{aligned}$$
(9.5)
$$\begin{aligned}&\max _{1\le i\le m}|{\uplambda }_{i,M}/M-e_i|=o(1) \end{aligned}$$
(9.6)

and

$$\begin{aligned}&\max _{m<i\le m+n}\Vert f_{i,M}-{c}_ig_{i-m}\Vert =o(1), \end{aligned}$$
(9.7)
$$\begin{aligned}&\max _{m< i\le n}|{\uplambda }_{i,M}-e_{i-m}|=o(1), \end{aligned}$$
(9.8)

where the values of \(c_1=c_{1,M}, c_2=c_{2,M}, \ldots ,c_{m+n}=c_{m+n,M}\) are \(1\) or \(-1.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horváth, L., Rice, G. An introduction to functional data analysis and a principal component approach for testing the equality of mean curves. Rev Mat Complut 28, 505–548 (2015). https://doi.org/10.1007/s13163-015-0169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-015-0169-7

Keywords

Mathematics Subject Classification

Navigation