Skip to main content

Advertisement

Log in

Minimal residual cancer and its clinical relevance

  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

About one third of axillary node-negative breast cancer patients will develop distant metastases, even if there was no evidence of tumor spread beyond the breast at the time of primary diagnosis. Several studies support the hypothesis that the presence of hematogenous disseminated tumor cells (DTC) in the bone marrow of cancer patients, a condition known as minimal residual disease (MRD), can be regarded as a precursor of clinically manifest distant metastases. MRD can be detected either as DTC in the bone marrow or as circulating tumor cells (CTC) in the peripheral blood. Bone marrow and peripheral blood represent mesenchymal compartments with rare prevalence of epithelial cells without evidence of malignant disease. There are two main approaches for the detection of DTC and/or CTC: 1) immunologic assays using monoclonal antibodies against epithelium-specific proteins, and 2) polymerase chain reaction-based molecular methods detecting tissue-specific transcripts. Although data on the prognostic relevance of DTC in bone marrow are vast, data on the prognostic role of CTC are much less convincing. Sampling peripheral blood instead of bone marrow, however, might enhance the therapeutic implications of detecting MRD in breast cancer, a topic that is examined in this article. This article also examines the major quality criteria for the transfer of new markers into the clinical routine in relation to MRD and reviews whether and in what detail MRD in bone marrow meets these criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Peto R: The worldwide overview: new results for systemic adjuvant therapies. Breast Cancer Res Treat 2007, 106(Suppl 1):S32.

    Google Scholar 

  2. Braun S, Pantel K, Muller P, Janni W, et al.: Cytokeratinpositive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 2000, 342:525–533.

    Article  CAS  PubMed  Google Scholar 

  3. Cote RJ, Rosen PP, Lesser ML, et al.: Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 1991, 9:1749–1756.

    CAS  PubMed  Google Scholar 

  4. Diel IJ, Kaufmann M, Costa SD, et al.: Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 1996, 88:1652–1658.

    Article  CAS  PubMed  Google Scholar 

  5. Gebauer G, Fehm T, Merkle E, et al.: Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up. J Clin Oncol 2001, 19:3669–3674.

    CAS  PubMed  Google Scholar 

  6. Gerber B, Krause A, Muller H, et al.: Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone marrow aspirates in breast cancer and its correlation with other prognostic factors. J Clin Oncol 2001, 19:960–971.

    CAS  PubMed  Google Scholar 

  7. Harbeck N, Untch M, Pache L, Eiermann W: Tumour cell detection in the bone marrow of breast cancer patients at primary therapy: results of a 3-year median follow-up. Br J Cancer 1994, 69:566–571.

    CAS  PubMed  Google Scholar 

  8. Landys K, Persson S, Kovarik J, et al.: Prognostic value of bone marrow biopsy in operable breast cancer patients at the time of initial diagnosis: results of a 20-year median follow-up. Breast Cancer Res Treat 1998, 49:27–33.

    Article  CAS  PubMed  Google Scholar 

  9. Mansi JL, Gogas H, Bliss JM, et al.: Outcome of primary-breast-cancer patients with micrometastases: a long- term follow-up study. Lancet 1999, 354:197–202.

    Article  CAS  PubMed  Google Scholar 

  10. Borgen E, Pantel K, Schlimok G, et al.: A European interlaboratory testing of three well-known procedures for immunocytochemical detection of epithelial cells in bone marrow. Results from analysis of normal bone marrow. Cytometry B Clin Cytom 2006, 70:400–409.

    CAS  PubMed  Google Scholar 

  11. Fehm T, Braun S, Muller V, et al.: A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 2006, 107:885–892.

    Article  PubMed  Google Scholar 

  12. Riethdorf S, Pantel K: Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterization. Pathobiology 2008, 75:140–148.

    Article  PubMed  Google Scholar 

  13. Pantel K, Brakenhoff RH: Dissecting the metastatic cascade. Nat Rev Cancer 2004, 4:448–456.

    Article  CAS  PubMed  Google Scholar 

  14. Nagrath S, Sequist LV, Maheswaran S, et al.: Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450:1235–1239.

    Article  CAS  PubMed  Google Scholar 

  15. Pachmann K, Camara O, Kavallaris A, et al.: Monitoring the response of circulating epithelial tumor cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse. J Clin Oncol 2008, 26:1208–1215.

    Article  PubMed  Google Scholar 

  16. Krivacic RT, Ladanyi A, Curry DN, et al.: A rare-cell detector for cancer. Proc Natl Acad Sci U S A 2004, 101:10501–10504.

    Article  CAS  PubMed  Google Scholar 

  17. Hsieh HB, Marrinucci D, Bethel K, et al.: High speed detection of circulating tumor cells. Biosens Bioelectron 2006, 21:1893–1899.

    Article  CAS  PubMed  Google Scholar 

  18. Alix-Panabieres C, Vendrell JP, Pelle O, et al.: Detection and characterization of putative metastatic precursor cells in cancer patients. Clin Chem 2007, 53:537–539.

    Article  CAS  PubMed  Google Scholar 

  19. Cristofanilli M, Budd GT, Ellis MJ, et al.: Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004, 351:781–791.

    Article  CAS  PubMed  Google Scholar 

  20. Hayes DF, Cristofanilli M, Budd GT, et al.: Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 2006, 12(14 Pt 1):4218–4224.

    Article  CAS  PubMed  Google Scholar 

  21. Riethdorf S, Fritsche H, Muller V, Rau T, et al.: Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res 2007, 13:920–928.

    Article  CAS  PubMed  Google Scholar 

  22. Benoy IH, Elst H, Philips M, et al.: Real-time RT-PCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer. Br J Cancer 2006, 94:672–680.

    CAS  PubMed  Google Scholar 

  23. Jotsuka T, Okumura Y, Nakano S, et al.: Persistent evidence of circulating tumor cells detected by means of RT-PCR for CEA mRNA predicts early relapse: a prospective study in node-negative breast cancer. Surgery 2004, 135:419–426.

    Article  PubMed  Google Scholar 

  24. Stathopoulou A, Vlachonikolis I, Mavroudis D, et al.: Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J Clin Oncol 2002, 20:3404–3412.

    Article  CAS  PubMed  Google Scholar 

  25. Bosma AJ, Weigelt B, Lambrechts AC, et al.: Detection of circulating breast tumor cells by differential expression of marker genes. Clin Cancer Res 2002, 8:1871–1877.

    CAS  PubMed  Google Scholar 

  26. Ring AE, Zabaglo L, Ormerod MG, et al.: Detection of circulating epithelial cells in the blood of patients with breast cancer: comparison of three techniques. Br J Cancer 2005, 92:906–912.

    Article  CAS  PubMed  Google Scholar 

  27. Hauch S, Zimmermann S, Lankiewicz S, et al.: The clinical significance of circulating tumour cells in breast cancer and colorectal cancer patients. Anticancer Res 2007, 27:1337–1341.

    CAS  PubMed  Google Scholar 

  28. Pantel K, Brakenhoff RH, Brandt B: Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 2008, 8:329–340.

    Article  CAS  PubMed  Google Scholar 

  29. Demel U, Tilz GP, Foeldes-Papp Z, et al.: Detection of tumour cells in the peripheral blood of patients with breast cancer. Development of a new sensitive and specific immunomolecular assay. J Exp Clin Cancer Res 2004, 23:465–468.

    CAS  PubMed  Google Scholar 

  30. Zieglschmid V, Hollmann C, Gutierrez B, et al.: Combination of immunomagnetic enrichment with multiplex RT-PCR analysis for the detection of disseminated tumor cells. Anticancer Res 2005, 25:1803–1810.

    CAS  PubMed  Google Scholar 

  31. Sieuwerts AM, Kraan J, Bolt J, et al.: Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst 2009, 101:61–66.

    CAS  PubMed  Google Scholar 

  32. Tewes M, Aktas B, Welt A, et al.: Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Res Treat 2009, 115:581–590.

    Article  PubMed  Google Scholar 

  33. Becker S, Becker-Pergola G, Banys M, et al.: Evaluation of a RT-PCR based routine screening tool for the detection of disseminated epithelial cells in the bone marrow of breast cancer patients. Breast Cancer Res Treat 2009, 117:227–233.

    Article  CAS  PubMed  Google Scholar 

  34. Schoenfeld A, Kruger KH, Gomm J, et al.: The detection of micrometastases in the peripheral blood and bone marrow of patients with breast cancer using immunohistochemistry and reverse transcriptase polymerase chain reaction for keratin 19. Eur J Cancer 1997, 33:854–861.

    Article  CAS  PubMed  Google Scholar 

  35. Dirix LY, Elst H, Benoy IH, et al.: Circulating tumor cell detection: a direct comparison between the CellSearch System, the AdnaTest, and CK-19/mammaglobin RT-PCR in patients with metastatic breast cancer. J Clin Oncol 2009, 27(Suppl):abstract e22117.

  36. Coombes RC, Berger U, Mansi J, et al.: Prognostic significance of micrometastases in bone marrow in patients with primary breast cancer. Natl Cancer Inst Monogr 1986, 1:51–53.

    Google Scholar 

  37. Redding WH, Coombes RC, Monaghan P, et al.: Detection of micrometastases in patients with primary breast cancer. Lancet 1983, 2:1271–1274.

    CAS  PubMed  Google Scholar 

  38. Wiedswang G, Borgen E, Karesen R, et al.: Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol 2003, 21:3469–3478.

    Article  CAS  PubMed  Google Scholar 

  39. Braun S, Vogl FD, Naume B, et al.: A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 2005, 353:793–802.

    Article  CAS  PubMed  Google Scholar 

  40. Janni W, Wiedswang G, Fehm T, et al.: Persistence of disseminated tumor cells (DTC) in bone marrow (BM) during follow-up predicts increased risk for relapse up-date of the pooled European data. Breast Cancer Res Treat 2006, 100(Suppl 1):abstract 18.

    Google Scholar 

  41. Pierga JY, Bonneton C, Vincent-Salomon A, et al.: Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin Cancer Res 2004, 10:1392–1400.

    Article  CAS  PubMed  Google Scholar 

  42. Muller V, Stahmann N, Riethdorf S, et al.: Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin Cancer Res 2005, 11:3678–3685.

    Article  PubMed  Google Scholar 

  43. Wiedswang G, Borgen E, Schirmer C, et al.: Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. Int J Cancer 2006, 118:2013–2019.

    Article  CAS  PubMed  Google Scholar 

  44. Budd GT, Cristofanilli M, Ellis MJ, et al.: Circulating tumor cells versus imaging—predicting overall survival in metastatic breast cancer. Clin Cancer Res 2006, 12:6403–6409.

    Article  CAS  PubMed  Google Scholar 

  45. De Giorgi U, Valero V, Rohren E, et al.: Circulating tumor cells and [18F]fluorodeoxyglucose positron emission tomography/computed tomography for outcome prediction in metastatic breast cancer. J Clin Oncol 2009, 27:3303–3311.

    Article  PubMed  Google Scholar 

  46. Rack B, Schindlbeck C, Schneeweiss A, et al.: Prognostic relevance of circulating tumor cells (CTCs) in peripheral blood of breast cancer patients before and after adjuvant chemotherapy — The German SUCCESS-Trial. Ann Meeting Proc 2008, 26:abstract 503.

    Google Scholar 

  47. Pachmann K, Camara O, Kavallaris A, et al.: Quantification of the response of circulating epithelial cells to neodadjuvant treatment for breast cancer: a new tool for therapy monitoring. Breast Cancer Res 2005, 7:R975–R979.

    Article  CAS  PubMed  Google Scholar 

  48. Ignatiadis M, Xenidis N, Perraki M, et al.: Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J Clin Oncol 2007, 25:5194–5202.

    Article  PubMed  Google Scholar 

  49. Ignatiadis M, Kallergi G, Ntoulia M, et al.: Prognostic value of the molecular detection of circulating tumor cells using a multimarker reverse transcription-PCR assay for cytokeratin 19, mammaglobin A, and HER2 in early breast cancer. Clin Cancer Res 2008, 14:2593–2600.

    Article  CAS  PubMed  Google Scholar 

  50. Quintela-Fandino M, Lopez JM, Hitt R, et al.: Breast cancer-specific mRNA transcripts presence in peripheral blood after adjuvant chemotherapy predicts poor survival among high-risk breast cancer patients treated with highdose chemotherapy with peripheral blood stem cell support. J Clin Oncol 2006, 24:3611–3618.

    Article  CAS  PubMed  Google Scholar 

  51. Xenidis N, Markos V, Apostolaki S, et al.: Clinical relevance of circulating CK-19 mRNA-positive cells detected during the adjuvant tamoxifen treatment in patients with early breast cancer. Ann Oncol 2007, 18:1623–1631.

    Article  CAS  PubMed  Google Scholar 

  52. Xenidis N, Ignatiadis M, Apostolaki S, et al.: Cytokeratin-19 mRNA-positive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. J Clin Oncol 2009, 27:2177–2184.

    Article  CAS  PubMed  Google Scholar 

  53. Pierga JY, Bidard FC, Mathiot C, et al.: Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res 2008, 14:7004–7010.

    Article  CAS  PubMed  Google Scholar 

  54. Aktas B, Tewes M, Fehm T, et al.: Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 2009, 11:R46.

    Article  PubMed  Google Scholar 

  55. Fehm T, Krawczyk N, Solomayer EF, et al.: ERalpha-status of disseminated tumour cells in bone marrow of primary breast cancer patients. Breast Cancer Res 2008, 10:R76.

    Article  PubMed  Google Scholar 

  56. Pantel K, Schlimok G, Braun S, et al.: Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 1993, 85:1419–1424.

    Article  CAS  PubMed  Google Scholar 

  57. Relf M, LeJeune S, Scott PA, et al.: Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 1997, 57:963–969.

    CAS  PubMed  Google Scholar 

  58. Miller K, Wang M, Gralow J, et al.: Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 2007, 357:2666–2676.

    Article  CAS  PubMed  Google Scholar 

  59. Santini D, Vespasiani GU, Vincenzi B, et al.: The antineoplastic role of bisphosphonates: from basic research to clinical evidence. Ann Oncol 2003, 14:1468–1476.

    Article  CAS  PubMed  Google Scholar 

  60. Aft R, Watson M, Ylagan L, et al.: Effect of zoledronic acid on bone marrow micrometastases in women undergoing neoadjuvant chemotherapy for breast cancer [abstract]. J Clin Oncol 2008, 26:1021.

    Google Scholar 

  61. Rack B, Janni W, Schoberth A, et al.: Secondary adjuvant therapy with zoledronate in patients with early breast cancer: is there an effect on persisting isolated tumor cells (ITC) in the bone marrow (BM)? [abstract]. Breast Cancer Res Treat 2004, 88(Suppl 1):6019

    Google Scholar 

  62. Diel IJ, Solomayer EF, Costa SD, et al.: Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 1998, 339:357–363.

    Article  CAS  PubMed  Google Scholar 

  63. Gnant M, Mlineritsch B, Schippinger W, et al.: Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med 2009, 360:679–691.

    Article  CAS  PubMed  Google Scholar 

  64. Slamon DJ, Godolphin W, Jones LA, et al.: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989, 244:707–712.

    Article  CAS  PubMed  Google Scholar 

  65. Cameron D, Casey M, Press M, et al.: A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat 2008, 112:533–543.

    Article  CAS  PubMed  Google Scholar 

  66. Fehm T, Becker S, Duerr-Stoerzer S, et al.: Determination of HER2 status using both serum HER2 levels and circulating tumor cells in patients with recurrent breast cancer whose primary tumor was HER2 negative or of unknown HER2 status. Breast Cancer Res 2007, 9:R74.

    Article  PubMed  Google Scholar 

  67. Hayes DF, Walker TM, Singh B, et al.: Monitoring expression of HER-2 on circulating epithelial cells in patients with advanced breast cancer. Int J Oncol 2002, 21:1111–1117.

    CAS  PubMed  Google Scholar 

  68. Meng S, Tripathy D, Shete S, et al.: HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci U S A 2004, 101:9393–9398.

    Article  CAS  PubMed  Google Scholar 

  69. Curigliano G, Rescigno M, Goldhirsch A: Immunology and breast cancer: therapeutic cancer vaccines. Breast 2007, 16(Suppl 2):S20–26.

    Article  PubMed  Google Scholar 

  70. Ko BK, Kawano K, Murray JL, et al.: Clinical studies of vaccines targeting breast cancer. Clin Cancer Res 2003, 9:3222–3234.

    CAS  PubMed  Google Scholar 

  71. Schlimok G, Funke I, Holzmann B, et al.: Micrometastatic cancer cells in bone marrow: in vitro detection with anticytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies. Proc Natl Acad Sci U S A 1987, 84:8672–8676.

    Article  CAS  PubMed  Google Scholar 

  72. Porro G, Menard S, Tagliabue E, et al.: Monoclonal antibody detection of carcinoma cells in bone marrow biopsy specimens from breast cancer patients. Cancer 1988, 61:2407–2411.

    Article  CAS  PubMed  Google Scholar 

  73. Kirk SJ, Cooper GG, Hoper M, et al.: The prognostic significance of marrow micrometastases in women with early breast cancer. Eur J Surg Oncol 1990, 16:481–485.

    CAS  PubMed  Google Scholar 

  74. Salvadori B, Squicciarini P, Rovini D, et al.: Use of monoclonal antibody MBr1 to detect micrometastases in bone marrow specimens of breast cancer patients. Eur J Cancer 1990, 26:865–867.

    Article  CAS  PubMed  Google Scholar 

  75. Mathieu MC, Friedman S, Bosq J, et al.: Immunohistochemical staining of bone marrow biopsies for detection of occult metastasis in breast cancer. Breast Cancer Res Treat 1990, 15:21–26.

    Article  CAS  PubMed  Google Scholar 

  76. Courtemanche DJ, Worth AJ, Coupland RW, MacFarlane JK: Detection of micrometastases from primary breast cancer. Can J Surg 1991, 34:15–19.

    CAS  PubMed  Google Scholar 

  77. Dearnaley DP, Ormerod MG, Sloane JP: Micrometastases in breast cancer: long-term follow-up of the first patient cohort. Eur J Cancer 1991, 27:236–239.

    Article  CAS  PubMed  Google Scholar 

  78. Singletary SE, Larry L, Tucker SL, Spitzer G: Detection of micrometastatic tumor cells in bone marrow of breast carcinoma patients. J Surg Oncol 1991, 47:32–36.

    Article  CAS  PubMed  Google Scholar 

  79. Funke I, Fries S, Rolle M, et al.: Comparative analyses of bone marrow micrometastases in breast and gastric cancer. Int J Cancer 1996, 65:755–761.

    Article  CAS  PubMed  Google Scholar 

  80. Molino A, Pelosi G, Turazza M, et al.: Bone marrow micro-metastases in 109 breast cancer patients: correlations with clinical and pathological features and prognosis. Breast Cancer Res Treat 1997, 42:23–30.

    Article  CAS  PubMed  Google Scholar 

  81. Untch M, Kahlert S, Funke I: Detection of cytokeratin (CK) 18 positive cells in the bone marrow of breast cancer patients — no prediction of bad outcome [abstract 18]. Proc Am Soc Clin Oncol 1999, 693a.

  82. Datta YH, Adams PT, Drobyski WR, et al.: Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction. J Clin Oncol 1994, 12:475–482.

    CAS  PubMed  Google Scholar 

  83. Fields KK, Elfenbein GJ, Trudeau WL, et al.: Clinical significance of bone marrow metastases as detected using the polymerase chain reaction in patients with breast cancer undergoing high-dose chemotherapy and autologous bone marrow transplantation. J Clin Oncol 1996, 14:1868–1876.

    CAS  PubMed  Google Scholar 

  84. Vannucchi AM, Bosi A, Glinz S, et al.: Evaluation of breast tumour cell contamination in the bone marrow and leukapheresis collections by RT-PCR for cytokeratin-19 mRNA. Br J Haematol 1998, 103:610–617.

    Article  CAS  PubMed  Google Scholar 

  85. Slade MJ, Smith BM, Sinnett HD, et al.: Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer. J Clin Oncol 1999, 17:870–879.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Rack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rack, B., Müller, V., Kasimir-Bauer, S. et al. Minimal residual cancer and its clinical relevance. Curr Breast Cancer Rep 1, 198–206 (2009). https://doi.org/10.1007/s12609-009-0028-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-009-0028-y

Keywords

Navigation