Skip to main content
Log in

Advance in the chemical synthesis and magnetic properties of nanostructured rare-earth-based permanent magnets

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Rare-earth-based permanent magnets are one of the most important magnets in both scientific and industrial fields. With the development of technology, nanostructured rare-earth-based permanent magnets with high energy products are highly required. In this article, we will review the progress in chemical synthetic strategies of nanostructured rare-earth-based permanent magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Strnat KJ. Modern permanent-magnets for applications in electrotechnology. Proc IEEE. 1990;78(6):923.

    Article  Google Scholar 

  2. Cronk ER. Recent developments in high-energy alnico alloys. J Appl Phys. 1966;37(3):1097.

    Article  CAS  Google Scholar 

  3. Cochardt A. Recent ferrite magnet developments. J Appl Phys. 1966;37(3):1112.

    Article  CAS  Google Scholar 

  4. Strnat K, Hoffer G, Olson J, Ostertag W, Becker JJ. A family of new cobalt-base permanent magnet materials. J Appl Phys. 1967;38(3):1001.

    Article  CAS  Google Scholar 

  5. Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y. New material for permanent-magnets on a base of Nd and Fe. J Appl Phys. 1984;55(6):2083.

    Article  CAS  Google Scholar 

  6. Croat JJ, Herbst JF, Lee RW, Pinkerton FE. Pr–Fe and Nd–Fe based materials—a new class of high-performance permanent-magnets. J Appl Phys. 1984;55(6):2078.

    Article  CAS  Google Scholar 

  7. Herbst JF, Croat JJ. Magnetization of R6Fe23 intermetallic compounds—molecular-field theory analysis. J Appl Phys. 1984;55(8):3023.

    Article  CAS  Google Scholar 

  8. Kneller EF, Hawig R. The exchange–spring magnet—a new material principle for permanent-magnets. IEEE Trans Magn. 1991;27(4):3588.

    Article  CAS  Google Scholar 

  9. Gu HW, Xu B, Rao JC, Zheng RK, Zhang XX, Fung KK, Wong CYC. Chemical synthesis of narrowly dispersed SmCo5 nanoparticles. J Appl Phys. 2003;93(10):7589.

    Article  CAS  Google Scholar 

  10. Gu HW, Zheng RK, Rao JC, Zhang XX, Fung KK, Xu B. Chemical synthesis and magnetization measurement of SmCo5 magnetic nanoparticles. Abstr Am Chem Soc. 2003;225:U74.

    Google Scholar 

  11. Chakka VM, Altuncevahir B, Jin ZQ, Li Y, Liu JP. Magnetic nanoparticles produced by surfactant-assisted ball milling. J Appl Phys. 2006;99(8):08E912.

    Article  Google Scholar 

  12. Rong CB, Zhang HW, Chen RJ, Shen BG, He SL, Liu JP. Effects of annealing on the coercivity of Sm(Co, Fe, Cu, Zr)z ribbons and its temperature dependence. J Phys D Appl Phys. 2006;39(3):437.

    Article  CAS  Google Scholar 

  13. Hou YL, Xu ZC, Peng S, Rong CB, Liu JP, Sun SH. A facile synthesis of SmCo5 magnets from core/shell Co/Sm2O3 nanoparticles. Adv Mater. 2007;19(20):3349.

    Article  CAS  Google Scholar 

  14. Wang YP, Li Y, Rong CB, Liu JP. Sm–Co hard magnetic nanoparticles prepared by surfactant-assisted ball milling. Nanotechnology. 2007;18(46):465701.

    Article  Google Scholar 

  15. Li Y, Zhang XL, Qiu R, Kang YS. Synthesis and investigation of SmCo5 magnetic nanoparticles. Colloid Surf A Physicochem Eng Asp. 2008;313:621.

    Article  Google Scholar 

  16. Liu JP. Ferromagnetic nanoparticles: synthesis, processing, and characterization. JOM. 2010;62(4):56.

    Article  Google Scholar 

  17. Matsushita T, Iwamoto T, Inokuchi M, Toshima N. Novel ferromagnetic materials of SmCo5 nanoparticles in single-nanometer size: chemical syntheses and characterizations. Nanotechnology. 2010;21(9):095603.

    Article  Google Scholar 

  18. Poudyal N, Rong CB, Liu JP. Effects of particle size and composition on coercivity of Sm–Co nanoparticles prepared by surfactant-assisted ball milling. J Appl Phys. 2010;107(9):09A703.

    Article  Google Scholar 

  19. Poudyal N, Nguyen VV, Rong CB, Liu JP. Anisotropic bonded magnets fabricated via surfactant-assisted ball milling and magnetic-field processing. J Phys D Appl Phys. 2011;44(33):335002.

    Article  Google Scholar 

  20. Zhang HW, Peng S, Rong CB, Liu JP, Zhang Y, Kramer MJ, Sun SH. Chemical synthesis of hard magnetic SmCo nanoparticles. J Mater Chem. 2011;21(42):16873.

    Article  CAS  Google Scholar 

  21. Suresh G, Saravanan P, Babu DR. Effect of annealing on phase composition, structural and magnetic properties of Sm–Co based nanomagnetic material synthesized by sol–gel process. J Magn Magn Mater. 2012;324(13):2158.

    Article  CAS  Google Scholar 

  22. Zheng LY, Cui BZ, Li WF, Hadjipanayis GC. Separated Sm–Co hard nanoparticles by an optimization of mechanochemical processes. J Appl Phys. 2012;7:07B536.

    Article  Google Scholar 

  23. Poudyal N, Altuncevahir B, Chakka V, Chen KH, Black TD, Liu JP, Ding Y, Wang ZL. Field-ball milling induced anisotropy in magnetic particles. J Phys D Appl Phys. 2004;37(24):L45.

    Article  CAS  Google Scholar 

  24. Zheng LY, Cui BZ, Zhao LX, Li WF, Hadjipanayis GC. Sm2Co17 nanoparticles synthesized by surfactant-assisted high energy ball milling. J Alloys Compd. 2012;539:69.

    Article  CAS  Google Scholar 

  25. Poudyal N, Liu JP. Advances in nanostructured permanent magnets research. J Phys D Appl Phys. 2013;46(4):043001.

    Article  Google Scholar 

  26. Liu RM, Yue M, Zhang DT, Liu WQ, Zhang JX. Preparation, structure and magnetic properties of SmCo5 nanoparticles and nanoflakes. Acta Metall Sin. 2012;48(4):475.

    Article  CAS  Google Scholar 

  27. Jadhav AP, Hussain A, Lee JH, Baek YK, Choi CJ, Kang YS. One pot synthesis of hard phase Nd2Fe14B nanoparticles and Nd2Fe14B/alpha-Fe nanocomposite magnetic materials. New J Chem. 2012;36(11):2405.

    Google Scholar 

  28. Yue M, Wang YP, Poudyal N, Rong CB, Liu JP. Preparation of Nd–Fe–B nanoparticles by surfactant-assisted ball milling technique. J Appl Phys. 2009;105(7):07A708.

    Article  Google Scholar 

  29. Akdogan NG, Hadjipanayis GC, Sellmyer DJ. Novel Nd2Fe14B nanoflakes and nanoparticles for the development of high energy nanocomposite magnets. Nanotechnology. 2010;21(29):295705.

    Article  Google Scholar 

  30. Deheri PK, Swaminathan V, Bhame SD, Liu ZW, Ramanujan RV. Sol–gel based chemical synthesis of Nd2Fe14B hard magnetic nanoparticles. Chem Mater. 2010;22(24):6509.

    Article  CAS  Google Scholar 

  31. Deheri PK, Shukla S, Ramanujan RV. The reaction mechanism of formation of chemically synthesized Nd2Fe14B hard magnetic nanoparticles. J Solid State Chem. 2012;186:224.

    Article  CAS  Google Scholar 

  32. Yue M, Pan R, Liu RM, Liu WQ, Zhang DT, Zhang JX, Zhang XF, Guo ZH, Li W. Crystallographic alignment evolution and magnetic properties of Nd–Fe–B nanoflakes prepared by surfactant-assisted ball milling. J Appl Phys. 2012;111(7):07A732.

    Article  Google Scholar 

  33. Liu W, Zhang ZD, Liu JP, Chen LJ, He LL, Liu Y, Sun XK, Sellmyer DJ. Exchange coupling and remanence enhancement in nanocomposite multilayer magnets. Adv Mater. 2002;14(24):1832.

    Article  CAS  Google Scholar 

  34. Cui WB, Takahashi YK, Hono K. Nd2Fe14B/FeCo anisotropic nanocomposite films with a large maximum energy product. Adv Mater. 2012;24(48):6530.

    Article  CAS  Google Scholar 

  35. Cui BZ, Han K, Garmestani H, Su JH, Schneider-Muntau HJ, Liu JP. Enhancement of exchange coupling and hard magnetic properties in nanocomposites by magnetic annealing. Acta Mater. 2005;53(15):4155.

    Article  CAS  Google Scholar 

  36. Jiang JS, Pearson JE, Liu ZY, Kabius B, Trasobares S, Miller DJ, Bader SD, Lee, Haskel D, Srajer G, Liu JP. A new approach for improving exchange-spring magnets. J Appl Phys. 2005;97(10):10K311.

    Article  Google Scholar 

  37. Yu MH, Hattrick-Simpers J, Takeuchi I, Li J, Wang ZL, Liu JP, Lofland SE, Tyagi S, Freeland JW, Giubertoni D, Bersani M, Anderle M. Interphase exchange coupling in Fe/Sm–Co bilayers with gradient Fe thickness. J Appl Phys. 2005;98(6):063908.

    Article  Google Scholar 

  38. Liu S, Higgins A, Shin E, Bauser S, Chen C, Lee D, Shen Y, He Y, Huang MQ. Enhancing magnetic properties of bulk anisotropic Nd–Fe–B/alpha-Fe composite magnets by applying powder coating technologies. IEEE Trans Magn. 2006;42(10):2912.

    Article  CAS  Google Scholar 

  39. Choi Y, Jiang JS, Pearson JE, Bader SD, Kavich JJ, Freeland JW, Liu JP. Controlled interface profile in Sm–Co/Fe exchange-spring magnets. Appl Phys Lett. 2007;91(7):072509.

    Article  Google Scholar 

  40. Choi Y, Jiang JS, Pearson JE, Bader SD, Liu JP. Origin of recoil hysteresis loops in Sm–Co/Fe exchange-spring magnets. Appl Phys Lett. 2007;91(2):022502.

    Article  Google Scholar 

  41. Hou Y, Sun S, Rong C, Liu JP. SmCo5/Fe nanocomposites synthesized from reductive annealing of oxide nanoparticles. Appl Phys Lett. 2007;91(15):153117.

    Article  Google Scholar 

  42. Rong CB, Liu JP. Effect of thermal fluctuations on the recoil loops of SmCo5/Fe nanocomposite system. J Appl Phys. 2009;105(7):07A714.

    Article  Google Scholar 

  43. Rong CB, Zhang Y, Poudyal N, Xiong XY, Kramer MJ, Liu JP. Fabrication of bulk nanocomposite magnets via severe plastic deformation and warm compaction. Appl Phys Lett. 2010;96(10):102513.

    Article  Google Scholar 

  44. Zhang Y, Kramer MJ, Rong CB, Liu JP. Microstructure and intergranular diffusion in exchange-coupled Sm–Co/Fe nanocomposites. Appl Phys Lett. 2010;97(3):032506.

    Article  Google Scholar 

  45. Chaubey GS, Poudyal N, Liu YZ, Rong CB, Liu JP. Synthesis of Sm–Co and Sm–Co/Fe nanocrystals by reductive annealing of nanoparticles. J Alloys Compd. 2011;509(5):2132.

    Article  CAS  Google Scholar 

  46. Liu WQ, Zuo JH, Yue M, Cui ZZ, Zhang DT, Zhang JX, Zhang PY, Ge HL, Guo ZH, Li W. Structure and magnetic properties of bulk anisotropic SmCo5/alpha-Fe nanocomposite permanent magnets with different alpha-Fe content. J Appl Phys. 2011;109(7):07A741.

    Article  Google Scholar 

  47. Rong CB, Zhang Y, Kramer MJ, Liu JP. Correlation between microstructure and first-order magnetization reversal in the SmCo5/alpha-Fe nanocomposite magnets. Phys Lett A. 2011;375(10):1329.

    Article  CAS  Google Scholar 

  48. Rong CB, Zhang Y, Poudyal N, Szlufarska I, Hebert RJ, Kramer MJ, Liu JP. Self-nanoscaling of the soft magnetic phase in bulk SmCo/Fe nanocomposite magnets. J Mater Sci. 2011;46(18):6065.

    Article  CAS  Google Scholar 

  49. Rong CB, Zhang Y, Poudyal N, Wang DP, Kramer MJ, Liu JP. Bulk SmCo5/alpha-Fe nanocomposite permanent magnets fabricated by mould-free Joule-heating compaction. J Appl Phys. 2011;109(7):07A735.

    Article  Google Scholar 

  50. Xiong XY, Rong CB, Rubanov S, Zhang Y, Liu JP. Atom probe study on the bulk nanocomposite SmCo/Fe permanent magnet produced by ball-milling and warm compaction. J Magn Magn Mater. 2011;323(22):2855.

    Article  CAS  Google Scholar 

  51. Hu DW, Yue M, Zuo JH, Pan R, Zhang DT, Liu WQ, Zhang JX, Guo ZH, Li W. Structure and magnetic properties of bulk anisotropic SmCo5/alpha-Fe nanocomposite permanent magnets prepared via a bottom up approach. J Alloys Compd. 2012;538:173.

    Article  CAS  Google Scholar 

  52. Rong CB, Poudyal N, Liu XB, Zhang Y, Kramer MJ, Liu JP. High temperature magnetic properties of SmCo5/alpha-Fe(Co) bulk nanocomposite magnets. Appl Phys Lett. 2012;101(15):152401.

    Article  Google Scholar 

  53. Wang DP, Poudyal N, Rong CB, Zhang Y, Kramer MJ, Liu JP. Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets. J Magn Magn Mater. 2012;324(18):2836.

    Article  CAS  Google Scholar 

  54. Liu WQ, Zuo JH, Yue M, Lv WC, Zhang DT, Zhang JX. Preparation and magnetic properties of bulk nanostructured PrCo5 permanent magnets with strong magnetic anisotropy. J Appl Phys. 2011;109(7):07A731.

    Article  Google Scholar 

  55. Coey JMD. Hard magnetic materials: a perspective. IEEE Trans Magn. 2011;47(12):4671.

    Article  CAS  Google Scholar 

  56. Zhang JJ, Gao HM, Yan Y, Bai X, Su F, Wang WQ, Du XB. Morphology and magnetic properties of CeCo5 submicron flakes prepared by surfactant-assisted high-energy ball milling. J Magn Magn Mater. 2012;324(20):3272.

    Article  CAS  Google Scholar 

  57. Li Z, Ding H, Zhang J, Wang HB, Wang H. Effects of annealing temperature and time on microstructure and magnetic properties of Pr–Co thin films. Rare Met. 2012;31(2):121.

    Article  CAS  Google Scholar 

  58. Tang CY, Xiao ZY, Luo F, Wang J, Ma CY, Zhang W. Structural characteristics and magnetic properties of bulk nanocrystalline Fe84Zr2Nb4B10 alloy prepared by mechanical alloying and spark plasma sintering consolidation. Rare Met. 2012;31(3):255.

    Article  CAS  Google Scholar 

  59. Liu JJ, Wang R, Yin HY, Liu XC, Si PZ, Du J. Structure and magnetostriction of Tb0.4Nd0.6(Fe0.8Co0.2)1.90 alloy prepared by solid-state synthesis. Rare Met. 2012;31(6):547.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Basic Research Program of China (No.2010CB934601), the National Natural Science Foundation of China (NSFC) (Nos. 51125001, 51172005, and 90922033), the Doctoral Program (No.20120001110078), and the Natural Science Foundation of Beijing (No. 2122022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Long Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Hou, YL. Advance in the chemical synthesis and magnetic properties of nanostructured rare-earth-based permanent magnets. Rare Met. 32, 105–112 (2013). https://doi.org/10.1007/s12598-013-0047-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0047-8

Keywords

Navigation