Skip to main content
Log in

Dynamical Behaviour of an Epidemic Model with Disease in Top-Predator Population Only: A Bifurcation Study

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In ecology, disease in the top-predator population plays an important role for controlling chaotic dynamics of a predator-prey system. We modify Hastings and Powell’s (HP) (Hastings and Powell, Ecology 72:896–903, 1991) food chain model by introducing disease in the top-predator population only. The modified model is analysed to obtain different conditions for which the system exhibits stability around the biologically feasible equilibrium points. Through numerical simulations we display that the modified system enters into periodic solutions depending upon the force of infection and half saturation constant. In addition, we study numerically that the system undergoes a saddle-node bifurcation. We utilize the MATCONT2.5.1 package to obtain various kinds of Hopf points and their continuation curves in the proposed model. Our results demonstrate that infection rate of top-predator population is the key parameter for controlling the chaotic dynamics observed in original HP model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kooi, B.W., Aguiar, M., Stollenwerk, N.: Bifurcation analysis of a family of multi-strain epidemiology models. J. Comput. Appl. Math. 252, 148–158 (2013)

    Article  MathSciNet  Google Scholar 

  2. Venturino, E.: Ecoepidemic models with disease incubation and selective hunting. J. Comput. Appl. Math. 234, 2883–2901 (2010)

    Article  MathSciNet  Google Scholar 

  3. Wei, H., Jiang, Y., Song, X., Su, G.H., Qiu, S.Z.: Global attractivity and permanence of a SVEIR epidemic model with pulse vaccination and time delay. J. Comput. Appl. Math. 229, 302–312 (2009)

    Article  MathSciNet  Google Scholar 

  4. Kermack, W.O., McKendrick, A.G.: A contributions to the mathematical theory of epidemics. In: Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, vol. 115, pp. 700–721 (1927)

  5. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics—II. The problem of endemicity. Bull. Math. Bio. 53, 57–87 (1991)

  6. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics—III. Further studies of the problem of endemicity. Bull. Math. Bio. 53, 89–118 (1991)

  7. Venturino, E.: The influence of diseases on Lotka-Volterra systems. Rocky Mt. J. Math. 24, 381–402 (1994)

    Article  MathSciNet  Google Scholar 

  8. Venturino, E.: Epidemics in predator-prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185–205 (2002)

    Article  Google Scholar 

  9. Keller, P., Venturino, E.: A simple four level trophic chain. Int. J. Pure Appl. Math. 32, 283–304 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Venturino, E.: Mathematical population dynamics: analysis of heterogeneity, vol. one: theory of epidemics. Epidemics Predat. Prey Models Disease Among Prey 1, 33–50 (1995)

    Google Scholar 

  11. Anderson, R.M., May, R.M.: Population biology of infectious diseases 1. Nature 280, 361–367 (1979)

    Article  Google Scholar 

  12. May, R.M., Anderson, R.M.: Population biology of infectious diseases 2. Nature 280, 455–461 (1979)

    Article  Google Scholar 

  13. Anderson, R.M., May, R.M.: The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. Lond. B 314, 533–570 (1986)

    Article  Google Scholar 

  14. Hadeler, K.P., Freedman, H.I.: Predator-prey populations with parasite infection. J. Math. Biol. 27, 609–631 (1989)

    Article  MathSciNet  Google Scholar 

  15. Chattopadhyay, J., Arino, O.: A predator-prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)

    Article  MathSciNet  Google Scholar 

  16. De Rossi, A., Lisa, F., Rubini, L., Zappavigna, A., Venturino, E.: A food chain ecoepidemic model: infection at the bottom trophic level. Ecol. Complex. 21, 233–245 (2015)

    Article  Google Scholar 

  17. Bramante, L., Maiolo, S., Venturino, E.: An ecoepidemic food chain with the disease at the intermediate trophic level, Bulletin of the Polytechnic Institute of Iasi, LX (LXIV), section Mathematics, Theoretical Mechanics, Physics, no. 4, pp. 9–22 (2014)

  18. Campion, S., Cena, R., Gallo, A., Venturino, E.: Effects of diseased top predators in food chains. Adv. Res. 2, 833–845 (2014)

    Article  Google Scholar 

  19. Haque, M., Chattopadhyay, J.: Role of transmissible disease in an infected prey-dependent predator-prey system. Math. Comput. Model. Dyn. Syst. 13, 163–178 (2007)

    Article  MathSciNet  Google Scholar 

  20. Sahoo, B., Poria, S.: Disease control in a food chain model supplying alternative food. Appl. Math. Model. 37, 5653–5663 (2013)

    Article  MathSciNet  Google Scholar 

  21. Sahoo, B., Poria, S.: Effects of allochthonous inputs in the control of infectious disease of prey. Chaos Solitons Fractals 75, 1–19 (2015)

    Article  MathSciNet  Google Scholar 

  22. Sahoo, B.: Role of additional food in eco-epidemiological system with disease in the prey. Appl. Math. Comput. 259, 61–79 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Chatterjee, S., Bandyopadhyay, M., Chattopadhyay, J.: Proper predation makes the system disease free-Conclusion drawn from an eco-epidemiological model. J. Biol. Sys. 14, 599–616 (2006)

    Article  Google Scholar 

  24. Lenbury, Y., Rattanamongkonkul, S., Tumrasvin, N., Amornsamankul, S.: Predator-prey interaction coupled by parasitic infection: Limit cycles and chaotic behavior. Math. Comput. Model. 30, 131–146 (1999)

    Article  MathSciNet  Google Scholar 

  25. Hastings, A., Powell, T.: Chaos in a three-species food chain. Ecology 72, 896–903 (1991)

    Article  Google Scholar 

  26. Chattopadhyay, J., Sarkar, R.R.: Chaos to order: preliminary experiments with a population dynamics models of three trophic levels. Ecol. Model. 163, 45–50 (2003)

    Article  Google Scholar 

  27. Das, K., Chatterjee, S., Chattopadhyay, J.: Disease in prey population and body size of intermediate predator reduce the prevalence of chaos-conclusion drawn from Hastings-Powell model. Ecol. Complex. 6, 363–374 (2009)

    Article  Google Scholar 

  28. Venturino, E.: Epidemics in predator-prey models: disease in the predators, IMA. J. Math. Appl. Medic. Biol. 19, 185–205 (2002)

    Article  Google Scholar 

  29. Haque, M., Venturino, E.: An ecoepidemiological model with disease in predator: the ratio-dependent case. Math. Methods Appl. Sci. 30, 1791–1809 (2007)

    Article  MathSciNet  Google Scholar 

  30. Haque, M.: A predator-prey model with disease in the predator species only. Nonlinear Anal. Real World Appl. 11, 2224–2236 (2010)

    Article  MathSciNet  Google Scholar 

  31. Jaques, R.P., Hardman, J.M., Laing, J.E., Smith, R.F., Bent, E.: Orchard trials in Canada on control of Cydia pomonella (Lep: Tortricidae) by Granulosis virus. Entomophaga 39, 281–292 (1994)

    Article  Google Scholar 

  32. Caballero, P., Vargas-Osuna, E., Santiago-Alvarez, C.: Efficacy of a spanish strain of Agrotis sehetum Granulosis virus (Baculoviridae) against Agro- tis segetum Schiff. (Lep., Noctuidae) on corn. J. Appl. Entomol. 112, 59–64 (1991)

    Article  Google Scholar 

  33. Laarif, A., Ben Ammar, A., Trabelsi, M., Ben Hamouda, M.H.: Histopathology and morphogenesis of the Granulovirus of the potato tuber moth Phthorimaea operculella. Tunis J. Plant Prot. 1, 115–124 (2006)

    Google Scholar 

  34. Ruana, S., Wang, W.: Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equations 188, 135–163 (2003)

    Article  MathSciNet  Google Scholar 

  35. Jin, Y., Wang, W., Xiao, S.: An SIRS model with a nonlinear incidence rate. Chaos Solitons Fractals 34, 1482–1497 (2007)

    Article  MathSciNet  Google Scholar 

  36. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: A Matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)

    Article  MathSciNet  Google Scholar 

  37. Sahoo, B., Poria, S.: Oscillatory coexistence of species in a food chain model with general Holling interactions. Differ. Equ. Dyn. Syst. (2013). doi:10.1007/s12591-013-0171-9

  38. Mestrom, W.: Continuation of limit cycles in MATLAB, Master thesis, Mathematical Institute, Utrecht University, The Netherlands (2002)

  39. Riet, A.: A continuation toolbox in MATLAB, Master thesis, Mathematical Institute, Utrecht University, The Netherlands (2000)

  40. Sahoo, B.: Disease control through provision of alternative food to predator: a model based study. Int. J. Dynam. Control (2014). doi:10.1007/s40435-014-0099-0

  41. Cao, F., Chen, L.: Asymptotic behavior of nonautonomous diffusive Lotka-Volterra model. Syst. Sci. Math. Sci. 11, 107–111 (1998)

    MathSciNet  MATH  Google Scholar 

  42. Nagumo, M.: Uber die Lage der Integralkurven gew onlicher Differentialgleichungen. Proc. Phys. Math. Soc. Jpn. 24, 551 (1942)

    MATH  Google Scholar 

  43. Kuznetsov, Y.A.: Elements of applied bifurcation theory, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

Download references

Acknowledgments

The author is extremely thankful to the anonymous honourable reviewers for their critical comments and valuable suggestions which have immensely improved the content in this version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banshidhar Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, B. Dynamical Behaviour of an Epidemic Model with Disease in Top-Predator Population Only: A Bifurcation Study. Differ Equ Dyn Syst 28, 153–176 (2020). https://doi.org/10.1007/s12591-016-0307-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0307-9

Keywords

Navigation