Skip to main content
Log in

Geophysical exploration for geothermal resources: An application of MT and CSAMT in Jiangxia, Wuhan, China

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

We present a case study of applying MT (magnetotellurics) and CSAMT (controlled source audio-frequency magnetotellurics) for geophysical exploration in Jiangxia (江夏), which is located in new industrial developing suburb, where artificial noises are severe. In order to know deep buried structure, fracture status, and characteristics of underground geothermal development about 2 km, we acquired MT and CSAMT data to image subsurface structure through inversion and joint interpretation. The electrical terms of the 2D MT inversion can be divided into three ranges of resistivity values: (1) a highly resistive (>350 Ω·m) layer mainly characteristic of limestone, dolomitic limestone, leuttrite, silicarenite, and packsand; (2) an intermediate resistivity (250–350 Ω·m) layer mainly constituted by siliceous shale, siltstone, battie, and ampelitic limestone; and (3) a low resistivity (20–250 Ω·m) layer, from surface to −100 m, which is related to lacustrine alluvium of Quaternary period; the deep low resistivity layer is interpreted to be representative of the geothermal field. The result of the 2D CSAMT inversion reveals two layers of different electrical resistivities: (1) the first resistive layer (20–250 Ω·m), which is related to lacustrine alluvium of Quaternary period and the heat source, and (2) the second resistive layer (250–3 000 Ω·m). The heat source appears to be bounded within the middle of exploration area and shows the N-S trend. Its depth ranges from more than 1.2 to less than 0.7 km, and its resistivity values range from 20 to 250 Ω·m in the northeast part of Jiangxia. Comparing the results of MT and CSAMT method, the positive anomalies are similar and can be assumed to be generated by the same source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Arango, C., Marcuello, A., Ledo, J., et al., 2009. 3D Magnetotelluric Characterization of the Geothermal Anomaly in the Llucmajor Aquifer System (Majorca, Spain). Journal of Applied Geophysics, 68(4): 479–488

    Article  Google Scholar 

  • Bai, D. H., Meju, M. A., Liao, Z. J., 2001. Magnetotelluric Images of Deep Crustal Structure of the Rehai Geothermal Field near Tengchong, Southern China. Geophys. J. Int., 147(3): 677–687

    Article  Google Scholar 

  • Bartel, L. C., Jacobson, R. D., 1987. Results of a Controlled-Source Audiofrequency Magnetotelluric Survey at the Puhimau Thermal Area, Kilauea Volcano, Hawaii. Geophysics, 52(5): 665–677

    Article  Google Scholar 

  • Bologna, M. S., Padilha, A. L., Vitorello, I., et al., 2011. Signatures of Continental Collisions and Magmatic Activity in Central Brazil as Indicated by a Magnetotelluric Profile across Distinct Tectonic Provinces. Precambrian Research, 185(1–2): 55–64

    Article  Google Scholar 

  • Bromley, C., 1993. Tensor CSAMT Study of the Fault Zone between Waikite and Te Kopia Geothermal Fields. Journal of Geomagnetism and Geoelectricity, 45(9): 887–896

    Article  Google Scholar 

  • Cagniard, L., 1953. Basic Theory of the Magneto-Telluric Method of Geophysical Prospecting. Geophysics, 18(3): 605–635

    Article  Google Scholar 

  • Garg, S. K., Pritchett, J. W., Wannamaker, P. E., et al., 2007. Characterization of Geothermal Reservoirs with Electrical Surveys: Beowawe Geothermal Field. Geothermics, 36(6): 487–517

    Article  Google Scholar 

  • Goldstein, M. A., Strangway, D. W., 1975. Audio-Frequency Magnetotellurics with a Grounded Electric Dipole Source. Geophysics, 40(4): 669–683

    Article  Google Scholar 

  • Harinarayana, T., Abdul, A. K. K., Murthy, D. N., et al., 2006. Exploration of Geothermal Structure in Puga Geothermal Field, Ladakh Himalaya, India by Magnetotelluric Studies. Journal of Applied Geophysics, 58(4): 280–295

    Article  Google Scholar 

  • Key, K., Weiss, C., 2006. Adaptive Finite-Element Modeling Using Unstructured Grids: The 2D Magnetotelluric Example. Geophysics, 71(6): G291–G299

    Article  Google Scholar 

  • Mogi, T., Nakama, S., 1993. Magnetotelluric Interpretation of the Geothermal System of the Kuju Volcano, Southwest Japan. Journal of Volcanology and Geothermal Research, 56(3): 297–308

    Article  Google Scholar 

  • Newman, G. A., Gasperikova, E., Hoversten, G. M., et al., 2008. Three-Dimensional Magnetotelluric Characterization of the Coso Geothermal Field. Geothermics, 37(4): 369–399

    Article  Google Scholar 

  • Park, M. K., Seol, S. J., Kim, H. J., 2006. Sensitivities of Generalized RRI Method for CSAMT Survey. Geosciences Journal, 10(1): 75–84

    Article  Google Scholar 

  • Sandberg, S. K., Hohmannt, G. W., 1982. Controlled-Source Audiomagnetotellurics in Geothermal Exploration. Geophysics, 47(1): 100–116

    Article  Google Scholar 

  • Savin, C., Ritz, M., Join, J. L., et al., 2001. Hydrothermal System Mapped by CSAMT on Karthala Volcano, Grande Comore Island, Indian Ocean. Journal of Applied Geophysics, 48(3): 143–152

    Article  Google Scholar 

  • Sinharay, R. K., Srivastava, S., Bhattacharya, B. B., 2010. Audiomagnetotelluric Studies to Trace the Hydrological System of Thermal Fluid Flow of Bakreswar Hot Spring, Eastern India: A Case History. Geophysics, 75(5): B187–B195

    Article  Google Scholar 

  • Smith, J. T., Booker, J. R., 1991. Rapid Inversion of Two and Three-Dimensional Magnetotelluric Data. J. Geophys. Res., 96(B3): 3905–3922

    Article  Google Scholar 

  • Spichak, V., Manzella, A., 2009. Electromagnetic Sounding of Geothermal Zones. Journal of Applied Geophysics, 68(4): 459–478

    Article  Google Scholar 

  • Unsworth, M., 2010. Magnetotelluric Studies of Active Continent-Continent Collisions. Surveys in Geophysics, 31(2): 137–161

    Article  Google Scholar 

  • Volpi, G., Manzella, A., Fiordelisi, A., 2003. Investigation of Geothermal Structures by Magnetotellurics (MT): An Example from the Mt. Amiata Area, Italy. Geothermics, 32(2): 131–145

    Google Scholar 

  • Vozoff, K., 1991. The Magnetotelluric Method. In: Nabighian, M. N., ed., Electromagnetic Methods in Applied Geophysics: Applications (Vol. 2). Society of Exploration Geophysicists, Tulsa. 641–712

    Chapter  Google Scholar 

  • Wannamaker, P. E., 1997a. Tensor CSAMT Survey over the Sulphur Springs Thermal Area, Valles Caldera, New Mexico, U.S.A., Part I: Implications for Structure of the Western Caldera. Geophysics, 62: 451–465

    Article  Google Scholar 

  • Wannamaker, P. E., 1997b. Tensor CSAMT Survey over the Sulphur Springs Thermal Area, Valles Caldera, New Mexico, U.S.A., Part II: Implications for CSAMT Methodology. Geophysics, 62: 466–476

    Article  Google Scholar 

  • Zhu, Q. J., Li, F. Z., Wang, X., 2009. Forward Modeling for the Static Effect of AMT and the Resolution of Conductive Folia. Geophysical & Geochemical Exploration, 33(2): 207–211 (in Chinese with English Abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyun Hu  (胡祥云).

Additional information

This study was supported by the National Natural Science Foundation of China (No. 40974040), the Deep Exploration in China (No. SinoProbe-01-03-02), and the Ministry of Land and Resources of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Hu, X., Huo, G. et al. Geophysical exploration for geothermal resources: An application of MT and CSAMT in Jiangxia, Wuhan, China. J. Earth Sci. 23, 757–767 (2012). https://doi.org/10.1007/s12583-012-0282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-012-0282-1

Key Words

Navigation