Skip to main content
Log in

Comments on Aur’s “From Neuroelectrodynamics to Thinking Machines”

  • Published:
Cognitive Computation Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aur D. From neuroelectrodynamics to thinking machines. Cogn Comput. 2011. doi:10.1007/s12559-011-9106-3.

    Google Scholar 

  2. Arnold VI. Mathematical methods of classical mechanics. Berlin: Springer; 1987.

    Google Scholar 

  3. Brunel N. Modeling point neurons: from Hodgkin-Huxley to integrate-and-fire. In: De Schutter E, editor. Computational modeling methods for neuroscientists. Cambridge: MIT press; 2010.

    Google Scholar 

  4. Willems JC. Dissipative dynamical systems. Eur J Control. 2007;13:134–51.

    Article  Google Scholar 

  5. Nicolis G, Prigogine I. Self-organization in non-equilibrium systems. London: Wiley; 1977.

    Google Scholar 

  6. Lichtenberg AJ, Lieberman MA. Regular and chaotic dynamics. Berlin: Springer; 1992.

    Google Scholar 

  7. Lorenz EJ. Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci. 1969;26(4):636–46.

    Article  Google Scholar 

  8. Murray JD. Mathematical biology: I. An introduction. 3rd ed. Berlin: Springer; 2007. p. 239–44.

    Google Scholar 

  9. Koch C. Biophysics of computation. Information processing in single neurons. Oxford: Oxford University Press; 1999.

    Google Scholar 

  10. Dan Y, Poo M. Spike timing-dependent plasticity of neural circuits. Neuron. 2004;44:23–30.

    Article  PubMed  CAS  Google Scholar 

  11. Wehr M, Laurent G. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature. 1996;384(6605):162–6.

    Article  PubMed  CAS  Google Scholar 

  12. Peirce CS. Prolegomena to an apology for pragmaticism. In: Hartshorne C, Weiss P, editors. Collected papers of Charles Sanders Peirce, vol. III/IV. Cambridge: The Beknap Press of Harvard University Press; 1932.

    Google Scholar 

  13. Braitenberg V. Functional interpretation of cerebellar histology. Nature. 1961;190:539–40.

    Article  Google Scholar 

  14. Hagiwara S, Morita H. Coding mechanisms of electroreceptor fibers in some electric fish. J Neurophysiol. 1963;26:551–67.

    PubMed  CAS  Google Scholar 

  15. Rose JE, Brugge JF, Anderson DJ, Hind JE. Phase-locked resonse to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol. 1967;30:769–93.

    PubMed  CAS  Google Scholar 

  16. Bray D. Protein molecules as computational elements in living cells. Nature. 1995;376:307–12.

    Article  PubMed  CAS  Google Scholar 

  17. Bray D, Levin MD, Morton-Firth CJ. Receptor clustering as a cellular mechanism to control sensitivity. Nature. 1998;393(6680):85–8.

    Article  PubMed  CAS  Google Scholar 

  18. Bray D. Wetware: a computer in every living cell. New Haven, CT: Yale University Press; 2009.

    Google Scholar 

  19. Alon U. An introduction to systems biology: design principles of biologcal circuits. London: Chapman and Hall; 2006.

    Google Scholar 

  20. Vaadia E, Aertsen A. Coding and computation in the cortex: single-neuron activity and cooperative phenomena. In: Aertsen A, Braitenberg V, editors. Information processing in the cortex. Berlin: Springer; 1992. p. 81–121.

    Chapter  Google Scholar 

  21. VanRullen R, Guyonneau R, Thorpe S. Spike times make sense. Trends Neurosci. 2005;28(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  22. Strehler BL, Lestienne R. Evidence on precise time-coded symbols and memory of patterns in monkey cortical neuronal spike trains. Proc Natl Acad Sci USA. 1986;83:9812–6.

    Article  PubMed  CAS  Google Scholar 

  23. Laurent G, Davidowitz H. Encoding of olfactory information with oscillating neural assemblies. Science. 1994;265:1872–5.

    Article  PubMed  CAS  Google Scholar 

  24. Freeman W, Schneider W. Changes in spatial patterns of rabbit olfactoory EEG with conditioning to odors. Psychophysiology. 1982;19(1):44–56.

    Article  PubMed  CAS  Google Scholar 

  25. Langner G. Periodicity coding in the auditory system. Hear Res. 1992;60:115–42.

    Article  PubMed  CAS  Google Scholar 

  26. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34(1):171–5.

    Article  PubMed  Google Scholar 

  27. Fyhn M, Molden S, Witter M, Moser E, Moser M-B. Spatial representation in the entorhinal cortex. Science. 2004;305:1258–64.

    Article  PubMed  CAS  Google Scholar 

  28. Moser E, Kropff E, Moser M. Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci. 2008;31:69–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Gomez-Ramirez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez-Ramirez, J. Comments on Aur’s “From Neuroelectrodynamics to Thinking Machines”. Cogn Comput 4, 563–565 (2012). https://doi.org/10.1007/s12559-012-9128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-012-9128-5

Keywords

Navigation