Skip to main content
Log in

Microstructure and tribological properties of low-friction composite MoS2(Ti,W) coating on the oxygen hardened Ti-6Al-4V alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Duplex surface treatment, which combines the oxygen diffusion hardening with a deposition of low friction MoS2(Ti,W) coating, was applied to improve the Ti-6Al-4V alloy load bearing capacity and tribological properties. The coating (3.1 μm thick) was deposited on the oxygen hardened alloy by magnetron sputtering. Microstructure characterisation was performed by scanning- and transmission electron microscopy methods, as well as X-ray diffractometry. The results of micro/nanostructural analyses performed by high-resolution transmission electron microscopy showed that the coatings are composed of MoS2 nanoclusters embedded in an amorphous matrix. Some Ti α, W, and Ti2S nanocrystals were also found in the coating microstructure. The wear resistance and friction coefficient of the hardened oxygen, as well as the coated alloy, was investigated at room temperature (RT), 300 °C, and 350 °C. The presence of the MoS2(Ti,W) coating decreases the friction coefficient from 0.85 for the oxygen hardened alloy to 0.15 (at RT) and 0.09 (at 300 °C and 350 °C) for the coated one. The coating essentially increases the wear resistance of the alloy at RT and 300 °C. It was found that the wear resistance of the coated alloy decreased significantly during the wear test performed at 350 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Renevier, V. C. Fox, D. G. Teer, and J. Hampshire, Mater. Design. 21, 337 (2000).

    Article  Google Scholar 

  2. S. K. Kim, Y. H. Ahn, and K. H. Kim, Surf. Coat. Tech. 169–170, 428 (2003).

    Article  Google Scholar 

  3. F. Bülbül, I. Efeoglu, and E. Arslan, Appl. Surf. Sci. 253, 4415 (2007).

    Article  Google Scholar 

  4. N. M. Renevier, N. Lobiondo, V. C. Fox, D. G. Teer, and J. Hampshire, Surf. Coat. Tech. 123, 84 (2000).

    Article  Google Scholar 

  5. W. H. Kao, and Y. L. Su, Mater. Sci. Eng. A 368, 239 (2004).

    Article  Google Scholar 

  6. C. Donnett, J. M. Martin, M. T. Le, and M. Belin, Tribol. Int. 29, 123 (1996).

    Article  Google Scholar 

  7. B. C. Stupp, Thin Solid Films. 84, 257 (1981).

    Article  Google Scholar 

  8. V. C. Fox, N. Renevier, D. G. Teer, J. Hampshire, and V. Rigato, Surf. Coat. Technol. 116–119, 492 (1999).

    Article  Google Scholar 

  9. W. Pawlak, R. Atraszkiewicz, P. Nolbrzak, and B. Wendler, Mater. Eng. (in Polish) 4, 1157 (2010).

    Google Scholar 

  10. N. M. Renevier, V. C. Fox, D. G. Teer, and J. Hampshire, Surf. Coat. Technol. 127, 24 (2000).

    Article  Google Scholar 

  11. C. Leyens and M. Peters (eds), Titanium and Titanium Alloys, pp.333–349, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2003).

    Google Scholar 

  12. T. Moskalewicz, B. Schaffer, A. Manescu, F. Rustichelli, and A. Czyrska-Filemonowicz, Surf. Coat. Technol. 201, 7635 (2007).

    Article  Google Scholar 

  13. T. Moskalewicz and A. Czyrska-Filemonowicz in: Titanium Alloys: Preparation, Properties and Applications, P. N. Sanchez (ed.), pp.235–268, Nova Science Publishers Inc., New York, USA (2010).

  14. T. Bell and H. Dong, Proc. 12th Int. Fed. Heat Treatment & Surf. Eng. Cong., pp.1–6, Melbourne, Australia (2000).

    Google Scholar 

  15. B. Wendler, T. Liśkiewicz, Ł. Kaczmarek, B. Januszewicz, D. Rylska, S. Fouvry, A. Rylski, and M. Jachowicz, Mater. Eng. 3, 681 (2004).

    Google Scholar 

  16. B. Wendler and W. Pawlak, J. Achiev. Mater. Manuf. Eng. 26, 207 (2008).

    Google Scholar 

  17. T. Moskalewicz, B. Wendler, S. Zimowski, B. Dubiel, and A. Czyrska-Filemonowicz, Surf. Coat. Technol. 205, 2668 (2010).

    Article  Google Scholar 

  18. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  19. P. Stadelmann, JEMS Java Electron Microscopy Software, http://cime.epfl.ch/ (2004).

    Google Scholar 

  20. E. Arslan, F. Bülbül, A. Alsaran, A. Celik, and I. Efeoglu, Wear 259, 814 (2005).

    Article  Google Scholar 

  21. T. Kubart, T. Polcar, L. Kopecky, R. Novaka, and D. Novakova, Surf. Coat. Tech. 193, 230 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Moskalewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moskalewicz, T., Zimowski, S., Wendler, B. et al. Microstructure and tribological properties of low-friction composite MoS2(Ti,W) coating on the oxygen hardened Ti-6Al-4V alloy. Met. Mater. Int. 20, 269–276 (2014). https://doi.org/10.1007/s12540-014-2009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-2009-6

Key words

Navigation