Skip to main content

Advertisement

Log in

Nannostratigraphy, nannofossil events, and paleoclimate fluctuations in the lower boundary of Kalat formation in East Kopet Dagh (NE Iran)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The biostratigraphy and the response of calcareous nannofossils to the End Cretaceous warming are investigated in the lower boundary of Kalat formation through the record of species richness, diversity, distribution patterns, and statistical treatments. The Kalat formation comprised of coarse-grained detritus limestone with subordinate sandstone intercalations. In the studied sections, the number of ten samples were taken and prepared with smear slide. In Dobaradar, section 22 species; in Kalat, section 25 species; and in Chahchaheh, section 32 species have been determined. Based on nannoplanktons and as a result of biostratigraphic studies, the nannofossil standard zones (CC25–CC26) were identified in all of sections. According to these zones in all of sections, the age of the studied thickness is Late Maastrichtian–Late Late Maastrichtian. In these sections, the presence of Micula murus at the end of Neyzar formation and the presence of this species at the lower part of Kalat formation indicate that the investigated boundary is Late Maastrichtian in age. The paleoecological results point to warm climate. The presence of warm water indicators (M. murus and Micula prinsii) and the absence of cool water indicators (Ahmuellerella octoradiata, Kamptnerius magnificus, and Nephrolithus frequens) suggest warm surface water conditions in these areas. In the lower boundary of Kalat formation, base on Lithraphidites spp. and Watznaueria barnesae, lowered fertility condition with low productivity at the end of the Maastrichtian were suggested, and the studied area was deposited in shallow marine environment in relatively low latitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Afshar Harb A (1969) A brief history of geological exploration and geology of the Sarakhs area and the Khangiran gas field. Bulletin of the Iranian petroleoum Institute 37:86–96

    Google Scholar 

  • Afshar Harb A (1979) The stratigraphy, tectonics and petroleum geology of the Kopet Dagh region, northern Iran. Unpub1.PhD thesis, Univ. of London

  • Andruleit H (1997) Coccolithophore fluxes in the Norwegian–Greenland Sea, seasonality and assemblage alterations. Mar Micropaleontol 31:45–64

    Article  Google Scholar 

  • Arthur MA, Dean WE, Schlanger SO (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism and changes in atmospheric CO2. In: Sundquist ET, Broecker WS (eds) The Car bon Cycle and Atmospheric CO2: Natural Variations Archean to Present. American Geophysical Union Geophysical Monograph 32, Washington, pp. 504–529

  • Barrera E, Savin SM (1999) Evolution of Campanian–Maastrichtian marine climates and oceans. In: Barrera E, Johnson CC (eds), Evolution of the Cretaceous Ocean-Climate System. Geological Society of America, Special Paper 332, Boulder, pp. 245–282

  • Barrera E, Savin SM, Thomas E, Jones CE (1997) Evidence for thermohaline- circulation reversals controlled by sea level change in the latest Cretaceous. Geology 25:715–718

    Article  Google Scholar 

  • Boersma A, Schackleton NJ (1981) Oxygen and carbon isotope variations and planktonic foraminiferal depth habitats: late cretaceous to paleocene, central pacific, dsdp sites 463 and 465, leg 65. Init Rep Deep Sea Drill Proj 65:513–526

    Google Scholar 

  • Bornemann A, Aschwer U, Mutterlose J (2003) The impact of calcareous nannofossils on the pelagic carbonate accumulation across the Jurassic–Cretaceous boundary. Palaeo Journal 199:187–228

    Google Scholar 

  • Bown PR, Young JR (1998) Techniques. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. Micropalaeontol. Soc. Publ, Br, pp 16–28

    Chapter  Google Scholar 

  • Bukry D (1973) Coccolith stratigraphy eastern Equatorial Pacific. Leg 16 DSDP. Init RepDSDP 16:611–653

    Google Scholar 

  • Burnett JA (1998) Upper Cretaceous In: Bown PR (ed) Calcareous Nannofossil Biostratigraphy. Chapmanand Hall/ Kluwer Academic Publishers:132–199

  • Cepek P, Hay WW (1969) Calcareous nannoplankton and biostratigraphic subdivision of the Upper Cretaceous. Trans Gulf Coast Assoc. Geol Soc 19:323–336

    Google Scholar 

  • Doeven PH (1983) Cretaceous nannofossil stratigraphy and paleoecology of the Canadian Atlantic Margin. Bulletin of the Geological Survey of Canada 356:1–70

    Google Scholar 

  • Douglas RG, Savin SM (1975) Oxygen and carbon isotope analyses of Tertiary and Cretaceous microfossils from Shatsky Rise and other sites in the North Pacific Ocean. Init Rep Deep Sea Drill Proj 32:509–520

    Google Scholar 

  • Ehrendorfer TW (1993) Late Cretaceous (Maastrichtian) calcareous nannoplankton biogeography with emphasis on events immediately preceding the Cretaceous/Palaeocene boundary. Ph.D. thesis, Woods Hole Oceanographic Institution

  • Erba E (2006) The first 150 million years history of calcareous nannoplankton: biosphere–geosphere interactions. Palaeo Journal 232:237–250

    Google Scholar 

  • Erba E (2004) Calcareous nannofossils and Mesozoic oceanic anoxic events. Marin micropaleontology Journal 52:85–106

    Article  Google Scholar 

  • Erba E, Castradori D, Guasti G, Ripepe M (1992) Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Clay Formation (southern England). Palaeogeogr Palaeoclimatol Palaeoecol 93:47–69

    Article  Google Scholar 

  • Erba E (1990) Middle Cretaceous calcareous nannofossils from the western Pacific (Leg 129): evidence for paleoequatorial crossings. Proc Ocean Drill Program Sci Results 129:189–196

    Google Scholar 

  • Eshet Y, Almogi-Labin A (1996) Calcareous nannofossils as paleoproductivity indicators in Upper Cretaceous organic-rich sequences in Israel. Mar Micropaleontol 29(1):37–61

    Article  Google Scholar 

  • Eshet Y, Moshkovitz S, Habib D, Benjamini C, Margaritz M (1992) Calcareous nannofossil and dinoflagellate stratigraphy across the Cretaceous/ Tertiary boundary at Hor Hahar, Israel. Marine Micropaleontology 18:199–228

    Article  Google Scholar 

  • Fisher CG, Hay WW (1999) Calcareous nannofossils as indicators of mid-Cretaceous paleofertility along an ocean front, U.S. Western Interior. In: Barrera E, Johnson CC (eds.) Evolution of the Cretaceous Ocean-climate System: Spec. Publ. Geol. Soc. Am., 332, pp 161–180

  • Gardin S (2002) Late Maastrichtian to Early Danian calcareous nannofossils at Elles (Northwest Tunisia). A tale of one million years across the K–T boundary. Palaeogeography, palaeoclimatology. Palaeoecology 178:211–231

    Article  Google Scholar 

  • Gardin S, Monechi S (1998) Palaeoecological change in middle to low latitude calcareous nannoplankton at the Cretaceous/Tertiary boundary. Bulletin de la Société géologique de France 169:709–723

    Google Scholar 

  • Gartner S (1996) Calcareous nannofossils at the Cretaceous–Tertiary boundary. In: MacLeod N, Keller G (eds) The cretaceous–tertiary mass extinction: biotic and environmental events. W.W. Norton and Co, NewYork, pp 27–84

    Google Scholar 

  • Gradstein FM, Ogg JG (2004) Geologic Time Scale 2004, why, how, and where next. Lethaia 37:175–181

    Article  Google Scholar 

  • Hadavi F, Moheghy MA (2009) Biostratigraphical studies of the Kalat formation at the type section. Isfahan University Research Bulletin 13:197–229

    Google Scholar 

  • Henriksson AS, Malmgren BA (1997) Biogeographic and ecologic patterns in calcareous nannoplankton in the Atlantic and Pacific Oceans during the Terminal Cretaceous. Studia Geologica Salmanticensia 33:17–40

    Google Scholar 

  • Herrle J, Pross J, Friedrich O, Kobler P, Hemleben C (2003) Forcing mechanisms for mid-Cretaceous black shale formation: evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France). Palaeo Journal 190:399–426

    Google Scholar 

  • Hill ME (1975) Selective dissolution of mid-Cretaceous (Cenomanian) calcareous nannofossils. Micropaleontology 21:227–235

    Article  Google Scholar 

  • Honjo S (1976) Coccoliths: production, transportation and sedimentation. Mar Micropaleontol 1:65–79

    Article  Google Scholar 

  • Johnson CC, Barron EJ, Kauffman EG, Arthur MA, Fawcett PJ, Yasuda MK (1996) Middle Cretaceous reef collapse linked to ocean heat transport. Geology 24:376–380

    Article  Google Scholar 

  • Lamolda MA, Gorostidi A, Paul RC (1992) Quantitative estimates of calcareous nannofossil changes across the Plenus Marls (latest Cenomanian), Dover, England: implications for the generation of the Cenomanian–Turonian boundary event. Cretaceous Research 15:143–164

    Article  Google Scholar 

  • Lees JA (2002) Calcareous nannofossils biogeography illustrates palaeoclimate change in the Late Cretaceous Indian Ocean. Cretaceous Res 23:537–634

    Article  Google Scholar 

  • Li L, Keller G (1999) Variability in Late Cretaceous and deep waters: evidence from stable isotopes. Marine Geology 161:171–190

    Article  Google Scholar 

  • Li L, Keller G (1998) Abrupt deep-sea warming at the end of the Cretaceous. Geology 26(11):995–998

    Article  Google Scholar 

  • MacLeod KG, Huber BT, Ward PD (1996) The Cretaceous–Tertiary event and other catastrophes in Earth history. In: Ryder G, Fastovsky D, Gartner S (eds) The biostratigraphy and paleobiogeography of Maastrichtian inoceramids. Geological Society of America, Special Publication 307, Boulder, pp 361–373

    Google Scholar 

  • Perch- Nielsen K (1985) Plankton Stratigraphy. In: Bolli Hm, Saunders JB, Perch- Nielsen K (Eds).. Cambridge University Press:329–426

  • Perch-Nielsen K, McKenzie JA, Quziang H (1982) Biostratigraphy and isotope stratigraphy and the “catastrophic” extinction of calcareous nannoplankton at the Cretaceous/ Tertiary boundary. In: Silver L (ed) Geological implications of impacts of large asteroids and comets on the Earth. Special Paper 190–Geological Society of America (GSA). Boulder, CO, United States, pp 353–371

    Chapter  Google Scholar 

  • Perch-Nielsen K (1972) Remarks on Late Cretaceous to Pleistocene coccoliths from the North Atlantic. Initial Rep Deep Sea drilf Proj 12:1003–1069

    Google Scholar 

  • Pospichal JJ (1994) Calcareous nannofossils and the K–T boundary, El Kef: no evidence for stepwise, gradual, or sequential extinctions. Geology 22:99–102

    Article  Google Scholar 

  • Pospichal JJ, Wise SW Jr (1990) Calcareous nannofossils across the K–T boundary, ODP Hole 690C, Maud Rise. Weddell Sea Proc Ocean Drill Program Sci Results 113:515–532

    Google Scholar 

  • Ravizza G, Peucker-Ehrenbrink B (2003) Chemostratigraphic evidence of deccan volcanism from the marine osmium isotope record. Science 302:1392–1395

    Article  Google Scholar 

  • Roth PH, Krumbach KR (1986) Middle Cretaceous calcareous nannofossil biogeography and preservation in the Atlantic and Indian Oceans: implications for paleoceanography. Mar Micropaleontol 10:235–266

    Article  Google Scholar 

  • Shafik S (1990) Late Cretaceous nannofossil biostratigraphy and biogeography of the Australian western margin. Bureau of Mineral Resources, Geology and Geophysics, Report 295:1–164

    Google Scholar 

  • Shamrock JL, Watkins DK (2009) Evolution of the Cretaceous calcareous nannofossil genus Eiffellithus and its biostratigraphic significance. Cretaceous Research Journal 30:1083–1102

    Article  Google Scholar 

  • Sissingh W (1977) Biostratigraphy of Cretaceous calcareous nannoplankton. Geol Mijnbo 56:37–65

    Google Scholar 

  • Steinmetz JC (1994) Stable isotopes in modern coccolithophores. In: Winter A-Siesser WG (ed) Coccolithophores. Cambridge University Press, Cambridge, pp 219–229

    Google Scholar 

  • Stockalin J (1968) Structural history and tectonics of Iran: a review. Bull Am Assoc Petrol Geo 52:58–129

    Google Scholar 

  • Stockalin J (1971) Stratigraphic Lexicon of Iran. Ministry of industry and mines. Geological Survey of Iran, report No. 18

  • Tantawy AAAM (2002) Calcareous nannofossil biostratigraphy and palaeoecology of the Cretaceous–Tertiary transition in the central eastern desert of Egypt. Marine Micropaleontology 47:323–356

    Article  Google Scholar 

  • Thibault N, Gardin S (2006) Maastrichtian calcareous nannofossil biostratigraphy and paleoecology in the Equatorial Atlantic (Demerara Rise, ODP Leg 207 Hole 1258A). Rev Micropal 49:199–214

    Article  Google Scholar 

  • Thibault N, Gardin S (2007) The Late Maastrichtian nannofossil record of climate change in the South Atlantic DSDP Hole 525A. Mar Micropaleontol 65:163–184

    Article  Google Scholar 

  • Thierstein HR (1981) Late cretaceous nannoplankton and the change at the C/T boundary. pp 355–394

  • Thierstein HR (1980) Selective dissolution of Late Cretaceous and Earliest Tertiary calcareous nannofossils: experimental evidence. Cretaceous Res 2:165–176

    Article  Google Scholar 

  • Thierstein HR (1976) Mesozoic calcareous nannoplankton biostratigraphy of marine sediments. Mar Micropaleontol 1:325–362

    Article  Google Scholar 

  • Young JR (1999) Calcareous nannofossil biostratigraphy. Kluwer Academic Publ, London

    Google Scholar 

  • Watkins DK, Self-Trail JM (2005) Calcareous nannofossil evidence for the existence of the Gulf Stream during the late Maastrichtian. Paleoceanography 20, PA3006 doi: 10.1029/2004PA001121

  • Watkins DK (1992) Upper Cretaceous nannofossils from Leg 120, Kerguelen, Southern Ocean. Proc. ODP. Sci Res 120:343–370

    Google Scholar 

  • Watkins DK, Wise SW, Pospichal JJ, Crux J (1996) Upper Cretaceous calcareous nannofossil biostratigraphy and paleoceanography of the Southern Ocean. In Moguilevsky, A. Whatley, R. (eds), Microfossils and Oceanic Environments. Univ. of Wales (Aberystwyth Press), pp 355–381

  • Williams JR, Bralower TJ (1995) Nannofossil assemblages, fine fraction stable isotopes, and the paleoceanography of the Valanginian-Barremian (Early Cretaceous) North Sea Basin. Paleoceanography 10:815–839

    Article  Google Scholar 

  • Wind FH, Wise SW (1983) Correlation of upper campanian- lower maastrichtian calcareous nannofossils assemblages in drill and piston cores from the Falkland Plateau of the southwest Atlantic Ocean. pp 551–563

  • Wind FH (1979) Maestrichtian–Campanian nannofloral provinces of the southern Atlantic and Indian Oceans. In: Talwani M et al. (ed.) Deep Sea Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment. Maurice Ewing Ser., 3. AGU, Washington, D.C., pp 123–137

  • Worsley T, Martini E (1970) Late Maastrichtian nannoplankton provinces. Nature 225:1242–1243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marziyeh Notghi Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadavi, F., Moghaddam, M.N. Nannostratigraphy, nannofossil events, and paleoclimate fluctuations in the lower boundary of Kalat formation in East Kopet Dagh (NE Iran). Arab J Geosci 7, 1501–1515 (2014). https://doi.org/10.1007/s12517-012-0802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-012-0802-4

Keywords

Navigation