Skip to main content
Log in

Cardiovascular Magnetic Resonance of Myocardial Structure, Function, and Perfusion in Mouse and Rat Models

  • Cardiac Magnetic Resonance (E Nagel, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

This review summarizes small-animal cardiovascular magnetic resonance (CMR) techniques that are being actively developed at present. Taking into account with few exceptions only literature of the past 2 years it shows that small-animal CMR has become an important and versatile analysis tool in many biomedical studies. The relatively complex signal formation and detection in magnetic resonance offers numerous ways of creating and modulating image contrast as a function of the specific needs. Although most new small-animal CMR developments are done within the scientific MR community, the MR manufacturers have readily contributed in making these techniques robust and available for routine application studies. Unlike other cardiovascular imaging techniques, CMR is used in many facets to assess morphology, global and regional function, blood flow, myocardial structure, cell damage, metabolism, and other molecular processes for studying mouse and rat models of human disease as well as general biochemical mechanisms in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bovens SM, te Boekhorst BC, den Ouden K, van de Kolk KW, Nauerth A, Nederhoff MG, et al. Evaluation of infarcted murine heart function: comparison of prospectively triggered with self-gated MRI. NMR Biomed. 2011;24(3):307–15. doi:10.1002/nbm.1593.

    Article  PubMed  Google Scholar 

  2. Hiba B, Richard N, Thibault H, Janier M. Cardiac and respiratory self-gated cine MRI in the mouse: comparison between radial and rectilinear techniques at 7T. Magn Reson Med. 2007;58(4):745–53. doi:10.1002/mrm.21355.

    Article  PubMed  Google Scholar 

  3. Schneider JE, Lanz T, Barnes H, Medway D, Stork LA, Lygate CA, et al. Ultra-fast and accurate assessment of cardiac function in rats using accelerated MRI at 9.4 Tesla. Magn Reson Med. 2008;59(3):636–41. doi:10.1002/mrm.21491.

    Article  PubMed  Google Scholar 

  4. • Schneider JE, Lanz T, Barnes H, Stork LA, Bohl S, Lygate CA et al. Accelerated cardiac magnetic resonance imaging in the mouse using an eight-channel array at 9.4 Tesla. Magn Reson Med. 2011;65(1):60-70. doi:10.1002/mrm.22605. Reports efficient parallel MRI for rodent CMR.

    Article  PubMed  Google Scholar 

  5. • Ratering D, Baltes C, Dorries C, Rudin M. Accelerated cardiovascular magnetic resonance of the mouse heart using self-gated parallel imaging strategies does not compromise accuracy of structural and functional measures. J Cardiovasc Magn Reson. 2010;12:43. doi:10.1186/1532-429X-12-43. Combination of self-gating with k-space acceleration.

    Article  PubMed  Google Scholar 

  6. Riegler J, Cheung KK, Man YF, Cleary JO, Price AN, Lythgoe MF. Comparison of segmentation methods for MRI measurement of cardiac function in rats. J Magn Reson Imaging. 2010;32(4):869–77. doi:10.1002/jmri.22305.

    Article  PubMed  Google Scholar 

  7. Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization. Radiology. 1989;171(3):841–5.

    PubMed  CAS  Google Scholar 

  8. Young AA, French BA, Yang Z, Cowan BR, Gilson WD, Berr SS, et al. Reperfused myocardial infarction in mice: 3D mapping of late gadolinium enhancement and strain. J Cardiovasc Magn Reson. 2006;8(5):685–92. doi:10.1080/10976640600721767.

    Article  PubMed  Google Scholar 

  9. Aletras AH, Ding S, Balaban RS, Wen H. DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson. 1999;137(1):247–52. doi:10.1006/jmre.1998.1676.

    Article  PubMed  CAS  Google Scholar 

  10. Gilson WD, Yang Z, French BA, Epstein FH. Complementary displacement-encoded MRI for contrast-enhanced infarct detection and quantification of myocardial function in mice. Magn Reson Med. 2004;51(4):744–52. doi:10.1002/mrm.20003.

    Article  PubMed  Google Scholar 

  11. Herold V, Morchel P, Faber C, Rommel E, Haase A, Jakob PM. In vivo quantitative three-dimensional motion mapping of the murine myocardium with PC-MRI at 17.6 T. Magn Reson Med. 2006;55(5):1058–64. doi:10.1002/mrm.20866.

    Article  PubMed  Google Scholar 

  12. • Dall’armellina E, Jung BA, Lygate CA, Neubauer S, Markl M, Schneider JE. Improved method for quantification of regional cardiac function in mice using phase-contrast MRI. Magn Reson Med. 2011. doi:10.1002/mrm.23022. Method for efficiently using tissue-phase-contrast MRI in CMR.

  13. Zhong J, Yu X. Strain and torsion quantification in mouse hearts under dobutamine stimulation using 2D multiphase MR DENSE. Magn Reson Med. 2010;64(5):1315–22. doi:10.1002/mrm.22530.

    Article  PubMed  Google Scholar 

  14. • Jacquier A, Kober F, Bun S, Giorgi R, Cozzone PJ, Bernard M. Quantification of myocardial blood flow and flow reserve in rats using arterial spin labeling MRI: comparison with a fluorescent microsphere technique. NMR Biomed. 2011. doi:10.1002/nbm.1645. Validation MBF reserve under isoflurane anesthesia using ASL.

  15. Vandsburger MH, Janiczek RL, Xu Y, French BA, Meyer CH, Kramer CM, et al. Improved arterial spin labeling after myocardial infarction in mice using cardiac and respiratory gated look-locker imaging with fuzzy C-means clustering. Magn Reson Med. 2010;63(3):648–57. doi:10.1002/mrm.22280.

    Article  PubMed  Google Scholar 

  16. Belle V, Kahler E, Waller C, Rommel E, Voll S, Hiller K, et al. In vivo quantitative mapping of cardiac perfusion in rats using a noninvasive MR spin-labeling method. J Magn Reson Imaging. 1998;8(6):1240–5.

    Article  PubMed  CAS  Google Scholar 

  17. Kober F, Iltis I, Cozzone PJ, Bernard M. Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: influence of ketamine/xylazine and isoflurane anesthesia. Magn Reson Med. 2005;53(3):601–6. doi:10.1002/mrm.20373.

    Article  PubMed  Google Scholar 

  18. Kober F, Iltis I, Izquierdo M, Desrois M, Ibarrola D, Cozzone PJ, et al. High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging. Magn Reson Med. 2004;51(1):62–7.

    Article  PubMed  Google Scholar 

  19. • Coolen BF, Moonen RP, Paulis LE, Geelen T, Nicolay K, Strijkers GJ. Mouse myocardial first-pass perfusion MR imaging. Magn Reson Med. 2010;64(6):1658-63. doi:10.1002/mrm.22588. Demonstration of first-pass perfusion MRI in mice.

    Article  PubMed  Google Scholar 

  20. • Makowski M, Jansen C, Webb I, Chiribiri A, Nagel E, Botnar R et al. First-pass contrast-enhanced myocardial perfusion MRI in mice on a 3-T clinical MR scanner. Magn Reson Med. 2010;64(6):1592-8. doi:10.1002/mrm.22470. Demonstration of first-pass perfusion MRI in mice.

    Article  PubMed  Google Scholar 

  21. Li W, Griswold M, Yu X. Rapid T1 mapping of mouse myocardium with saturation recovery Look-Locker method. Magn Reson Med. 2010;64(5):1296–303. doi:10.1002/mrm.22544.

    Article  PubMed  Google Scholar 

  22. • Coolen BF, Geelen T, Paulis LE, Nauerth A, Nicolay K, Strijkers GJ. Three-dimensional T1 mapping of the mouse heart using variable flip angle steady-state MR imaging. NMR Biomed. 2011;24(2):154-62. doi:10.1002/nbm.1566. Original novel method for rapid T1 mapping.

    Article  PubMed  Google Scholar 

  23. Lefrancois W, Miraux S, Calmettes G, Pourtau L, Franconi JM, Diolez P, et al. A fast black-blood sequence for four-dimensional cardiac manganese-enhanced MRI in mouse. NMR Biomed. 2011;24(3):291–8. doi:10.1002/nbm.1588.

    Article  PubMed  Google Scholar 

  24. Protti A, Sirker A, Shah AM, Botnar R. Late gadolinium enhancement of acute myocardial infarction in mice at 7T: cine-FLASH versus inversion recovery. J Magn Reson Imaging. 2010;32(4):878–86. doi:10.1002/jmri.22325.

    Article  PubMed  Google Scholar 

  25. • Beyers RJ, Smith RS, Xu Y, Piras BA, Salerno M, Berr SS et al. T(2) -weighted MRI of post-infarct myocardial edema in mice. Magn Reson Med. 2011. doi:10.1002/mrm.22975. Optimization of myocardial T2 mapping with excellent quality.

  26. Huang S, Sosnovik DE. Molecular and Microstructural Imaging of the Myocardium. Curr Cardiovasc Imaging Rep. 2010;3(1):26–33. doi:10.1007/s12410-010-9007-y.

    Article  PubMed  Google Scholar 

  27. Sosnovik DE, Wang R, Dai G, Reese TG, Wedeen VJ. Diffusion MR tractography of the heart. J Cardiovasc Magn Reson. 2009;11:47. doi:10.1186/1532-429X-11-47.

    Article  PubMed  Google Scholar 

  28. • Sosnovik DE, Wang R, Dai G, Wang T, Aikawa E, Novikov M et al. Diffusion spectrum MRI tractography reveals the presence of a complex network of residual myofibers in infarcted myocardium. Circ Cardiovasc Imaging. 2009;2(3):206-12. doi:10.1161/CIRCIMAGING.108.815050. Application of ex vivo and challenging in vivo diffusion MRI.

    Article  PubMed  Google Scholar 

  29. Gupta A, Chacko VP, Weiss RG. Abnormal energetics and ATP depletion in pressure-overload mouse hearts: in vivo high-energy phosphate concentration measures by noninvasive magnetic resonance. Am J Physiol Heart Circ Physiol. 2009;297(1):H59–64. doi:10.1152/ajpheart.00178.2009.

    Article  PubMed  CAS  Google Scholar 

  30. Maslov MY, Chacko VP, Hirsch GA, Akki A, Leppo MK, Steenbergen C, et al. Reduced in vivo high-energy phosphates precede adriamycin-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol. 2010;299(2):H332–7. doi:10.1152/ajpheart.00727.2009.

    Article  PubMed  CAS  Google Scholar 

  31. • Gupta A, Chacko VP, Schar M, Akki A, Weiss RG. Impaired ATP kinetics in failing in vivo mouse heart. Circ Cardiovasc Imaging. 2011;4(1):42-50. doi:10.1161/CIRCIMAGING.110.959320. Link between phosphorus metabolites and heart failure established in mice in vivo.

    Article  PubMed  CAS  Google Scholar 

  32. Schar M, El-Sharkawy AM, Weiss RG, Bottomley PA. Triple repetition time saturation transfer (TRiST) 31P spectroscopy for measuring human creatine kinase reaction kinetics. Magn Reson Med. 2010;63(6):1493–501. doi:10.1002/mrm.22347.

    Article  PubMed  CAS  Google Scholar 

  33. Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed. 2011;24(2):114–29. doi:10.1002/nbm.1570.

    Article  PubMed  CAS  Google Scholar 

  34. Flogel U, Su S, Kreideweiss I, Ding Z, Galbarz L, Fu J, et al. Noninvasive detection of graft rejection by in vivo (19) F MRI in the early stage. Am J Transplant. 2011;11(2):235–44. doi:10.1111/j.1600-6143.2010.03372.x.

    Article  PubMed  CAS  Google Scholar 

  35. Atherton HJ, Dodd MS, Heather LC, Schroeder MA, Griffin JL, Radda GK, et al. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study. Circulation. 2011;123(22):2552–61. doi:10.1161/CIRCULATIONAHA.110.011387.

    Article  PubMed  CAS  Google Scholar 

  36. Schroeder MA, Swietach P, Atherton HJ, Gallagher FA, Lee P, Radda GK, et al. Measuring intracellular pH in the heart using hyperpolarized carbon dioxide and bicarbonate: a 13C and 31P magnetic resonance spectroscopy study. Cardiovasc Res. 2010;86(1):82–91. doi:10.1093/cvr/cvp396.

    Article  PubMed  CAS  Google Scholar 

  37. Lau AZ, Chen AP, Ghugre NR, Ramanan V, Lam WW, Connelly KA, et al. Rapid multislice imaging of hyperpolarized 13C pyruvate and bicarbonate in the heart. Magn Reson Med. 2010;64(5):1323–31. doi:10.1002/mrm.22525.

    Article  PubMed  CAS  Google Scholar 

  38. • Tyler DJ. Cardiovascular Applications of Hyperpolarized MRI. Curr Cardiovasc Imaging Rep. 2011;4(2):108-15. doi:10.1007/s12410-011-9066-8. Excellent review on hyperpolarized 13C MR and potential applications.

    Article  PubMed  Google Scholar 

  39. Qiao H, Zhang H, Yamanaka S, Patel VV, Petrenko NB, Huang B, et al. Long-term improvement in postinfarct left ventricular global and regional contractile function is mediated by embryonic stem cell-derived cardiomyocytes. Circ Cardiovasc Imaging. 2011;4(1):33–41. doi:10.1161/CIRCIMAGING.110.957431.

    Article  PubMed  Google Scholar 

  40. Campan M, Lionetti V, Aquaro GD, Forini F, Matteucci M, Vannucci L, et al. Ferritin as a reporter gene for in vivo tracking of stem cells by 1.5-T cardiac MRI in a rat model of myocardial infarction. Am J Physiol Heart Circ Physiol. 2011;300(6):H2238–50. doi:10.1152/ajpheart.00935.2010.

    Article  PubMed  CAS  Google Scholar 

  41. Kraehenbuehl TP, Ferreira LS, Hayward AM, Nahrendorf M, van der Vlies AJ, Vasile E, et al. Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials. 2011;32(4):1102–9. doi:10.1016/j.biomaterials.2010.10.005.

    Article  PubMed  CAS  Google Scholar 

  42. Sosnovik DE, Nahrendorf M, Panizzi P, Matsui T, Aikawa E, Dai G, et al. Molecular MRI detects low levels of cardiomyocyte apoptosis in a transgenic model of chronic heart failure. Circ Cardiovasc Imaging. 2009;2(6):468–75. doi:10.1161/CIRCIMAGING.109.863779.

    Article  PubMed  Google Scholar 

  43. Dash R, Chung J, Chan T, Yamada M, Barral J, Nishimura D et al. A molecular MRI probe to detect treatment of cardiac apoptosis in vivo. Magn Reson Med. 2011. doi:10.1002/mrm.22876.

  44. • Harel-Adar T, Ben Mordechai T, Amsalem Y, Feinberg MS, Leor J, Cohen S. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc Natl Acad Sci U S A. 2011;108(5):1827-32. doi:10.1073/pnas.1015623108. Use of in vivo CMR to strengthen a major finding in treatment of MI.

    Article  PubMed  CAS  Google Scholar 

  45. Aksentijevic D, Lygate CA, Makinen K, Zervou S, Sebag-Montefiore L, Medway D, et al. High-energy phosphotransfer in the failing mouse heart: role of adenylate kinase and glycolytic enzymes. Eur J Heart Fail. 2010;12(12):1282–9. doi:10.1093/eurjhf/hfq174.

    Article  PubMed  CAS  Google Scholar 

  46. Gros D, Theveniau-Ruissy M, Bernard M, Calmels T, Kober F, Sohl G, et al. Connexin 30 is expressed in the mouse sino-atrial node and modulates heart rate. Cardiovasc Res. 2010;85(1):45–55. doi:10.1093/cvr/cvp280.

    Article  PubMed  CAS  Google Scholar 

  47. Tsika RW, Ma L, Kehat I, Schramm C, Simmer G, Morgan B, et al. TEAD-1 overexpression in the mouse heart promotes an age-dependent heart dysfunction. J Biol Chem. 2010;285(18):13721–35. doi:10.1074/jbc.M109.063057.

    Article  PubMed  CAS  Google Scholar 

  48. Wansapura JP, Millay DP, Dunn RS, Molkentin JD, Benson DW. Magnetic resonance imaging assessment of cardiac dysfunction in delta-sarcoglycan null mice. Neuromuscul Disord. 2011;21(1):68–73. doi:10.1016/j.nmd.2010.09.007.

    Article  PubMed  Google Scholar 

  49. Banquet S, Gomez E, Nicol L, Edwards-Levy F, Henry JP, Cao R, et al. Arteriogenic therapy by intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure. Circulation. 2011;124(9):1059–69. doi:10.1161/CIRCULATIONAHA.110.010264.

    Article  PubMed  Google Scholar 

  50. • Hiller KH, Ruile P, Kraus G, Bauer WR, Waller C. Tissue ACE inhibition improves microcirculation in remote myocardium after coronary stenosis: MR imaging study in rats. Microvasc Res. 2010;80(3):484-90. doi:10.1016/j.mvr.2010.05.007. Use of multimodal CMR to perform a complete assessment of function and microcirculation in vivo.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Kober.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kober, F., Bernard, M., Troalen, T. et al. Cardiovascular Magnetic Resonance of Myocardial Structure, Function, and Perfusion in Mouse and Rat Models. Curr Cardiovasc Imaging Rep 5, 109–115 (2012). https://doi.org/10.1007/s12410-012-9122-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-012-9122-z

Keywords

Navigation