Skip to main content

Advertisement

Log in

High- and Low-Energy Emulsifications for Food Applications: A Focus on Process Parameters

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

High-energy emulsification is traditionally used to produce food-grade emulsions. However, energy input, design of the device and the type of surfactant should be carefully evaluated to achieve the desired emulsion properties. The low-energy processes, as spontaneous emulsification and phase inversion temperature, are alternative methods for producing systems with high stability and smaller particle sizes. Nevertheless, the surfactants and cosurfactants frequently used to produce emulsions from the low-energy process are not food grade or require a higher concentration than is allowed in food products. In this review, the characteristics of emulsions produced from low- and high-energy emulsifications, the mechanisms of droplet formation and their stability are reviewed with a particular focus on recent studies addressing the effects of process parameters on the properties of food emulsions. Knowing the principles and limitations of high- and low-energy processes, adequate process conditions and future trends are suggested depending on the system composition and the desired properties of the final product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amar I, Aserin A, Garti N (2004) Microstructure transitions derived from solubilisation of lutein and lutein esters in food microemulsions. Colloids Surf B Biointerfaces 33:143–150

    Article  CAS  Google Scholar 

  2. Anton N, Vandamme TF (2009) The universality of low-energy nano-emulsification. Int J Pharm 377:142–147

    Article  CAS  Google Scholar 

  3. Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates—A review. J Control Release 128:185–199

    Article  CAS  Google Scholar 

  4. Bera A, Ojha K, Mandal A, Kumar T (2011) Interfacial tension and phase behavior of surfactant-brine-oil system. Colloids Surf A Physicochem Eng Asp 383:114–119

    Article  CAS  Google Scholar 

  5. Biasutti M, Venir E, Marchesini G, Innocente N (2010) Rheological properties of model dairy emulsions as affected by high pressure homogenization. Innov Food Sci Emerg Technol 11:580–586

    Article  Google Scholar 

  6. Binks BP (1998) Modern aspects of emulsion science. The Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  7. Bouchemal K, Briançon S, Perrier E, Fessi H (2004) Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. Int J Pharm 280:241–251

    Article  CAS  Google Scholar 

  8. Cambiella A, Benito JM, Pazos C, Coca J, Ratoi M, Spikes HA (2006) The effect of emulsifier concentration on the lubricating properties of oil-in-water emulsions. Tribol Lett 22:53–65

    Article  CAS  Google Scholar 

  9. Campo L, Yaghmur A, Garti N, Leser ME, Folmer B, Glatter O (2004) Five-component food-grade microemulsions: structural characterization by SANS. J Colloid Interface Sci 274:251–267

    Article  CAS  Google Scholar 

  10. Casoli P, Vacca A, Berta GL (2010) A numerical procedure for predicting the performance of high pressure homogenizing valves. Simul Model Pract Theory 18:125–138

    Article  Google Scholar 

  11. Che LM, Wang LJ, Li D, Bhandari B, Özkan N, Chen XD, Mao ZH (2009) Starch pastes thinning during high-pressure homogenization. Carbohydr Polym 75:32–38

    Article  CAS  Google Scholar 

  12. Cho YH, Kim S, Bae EK, Mok CK, Park J (2008) Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures. J Food Sci 73:115–121

    Article  CAS  Google Scholar 

  13. Cortés-Muñoz M, Chevalier-Lucia D, Dumay E (2009) Characteristics of submicron emulsions prepared by ultra-high pressure homogenisation: effect of chilled or frozen storage. Food Hydrocolloids 23:640–654

    Article  CAS  Google Scholar 

  14. Dave H, Gao F, Schultz M, Co CC (2007) Phase behavior and SANS investigations of edible sugar-limonene microemulsions. Colloids Surf A Physicochem Eng Asp 296:45–50

    Article  CAS  Google Scholar 

  15. Davies E, Dickinson E, Bee R (2000) Shear stability of sodium caseinate emulsions containing monoglyceride and triglyceride crystals. Food Hydrocolloids 14:145–153

    Article  CAS  Google Scholar 

  16. Desrumaux A, Marcand J (2002) Formation of sunflower oil emulsions stabilized by whey proteins with high-pressure homogenization (up to 350 MPa): effect of pressure on emulsion characteristics. Int J Food Sci Technol 37:263–269

    Article  CAS  Google Scholar 

  17. Dickinson E (2003) Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids 17:25–39

    Article  CAS  Google Scholar 

  18. Dickinson E (2009) Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids 23:1473–1482

    Article  CAS  Google Scholar 

  19. Dumay EM, Kalichevsky MT, Cheftel JC (1994) High-pressure unfolding and aggregation of β-lactoglobulin and the baroprotective effects of sucrose. J Agric Food Chem 42:1861–1868

    Article  CAS  Google Scholar 

  20. Evans DF, Wennerström H (1999) The colloidal domain – where physics, chemistry, biology and technology meet. VCH Publishers, New York

    Google Scholar 

  21. Fan Y, Li X, Zhou Y, Fan C, Wang X, Huang Y, Liu Y (2011) Improved intestinal delivery of salmon calcitonin by water-in-oil microemulsions. Int J Pharm 416:323–330

    Article  CAS  Google Scholar 

  22. Fanun M (2009) Properties of microemulsions based on mixed nonionic surfactants and mixed oils. J Mol Liq 150:25–32

    Article  CAS  Google Scholar 

  23. Fanun M (2010) Microemulsions with mixed nonionic surfactants and flavor oil. J Surfactants Deterg 13:321–328

    Article  CAS  Google Scholar 

  24. Fanun M (2010) Properties of microemulsions with mixed non-ionic surfactants and citrus oil. Colloids Surf A Physicochem Eng Asp 382:226–231

    Article  CAS  Google Scholar 

  25. Fanun M (2010) Formulation and characterization of microemulsions based on mixed nonionic surfactants and peppermint oil. J Colloid Interface Sci 343:496–503

    Article  CAS  Google Scholar 

  26. Fasolin LH, Santana RC, Cunha RL (2012) Microemulsions and liquid crystalline formulated with triacylglycerols: effect of ethanol and oil unsaturation. Colloids Surf A Physicochem Eng Asp 415:31–40

    Article  CAS  Google Scholar 

  27. Feng JL, Wang ZW, Zhang J, Wang ZN, Liu F (2009) Study on food-grade vitamin E microemulsions based on nonionic emulsifiers. Colloids Surf A Physicochem Eng Asp 339:1–6

    Article  CAS  Google Scholar 

  28. Fernandez P, André V, Rieger J, Kühnle A (2004) Nano-emulsion formation by emulsion phase inversion. Colloids Surf A Physicochem Eng Asp 251:53–58

    Article  CAS  Google Scholar 

  29. Flanagan J, Singh H (2006) Microemulsions: a potential delivery system for bioactives in food. Crit Rev Food Sci Nutr 46:221–237

    Article  CAS  Google Scholar 

  30. Flanagan J, Kortegaard K, Pinder DN, Rades T, Singh H (2006) Solubilisation of soybean oil in microemulsions using various surfactants. Food Hydrocolloids 20:253–260

    Article  CAS  Google Scholar 

  31. Floury J, Desrumaux A, Lardières J (2000) Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov Food Sci Emerg Technol 1:127–134

    Article  CAS  Google Scholar 

  32. Floury J, Desrumaux A, Axelos MAV, Legrand J (2003) Effect of high pressure homogenisation on methylcellulose as food emulsifier. J Food Eng 58:227–238

    Article  Google Scholar 

  33. Floury J, Bellettre J, Legrand J, Desrumaux A (2004) Analysis of a new type of high pressure homogeniser. A study of the flow pattern. Chem Eng Sci 59:843–853

    Article  CAS  Google Scholar 

  34. Forgiarini A, Esquena J, González C, Solans C (2001) Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 17:2076–2083

    Article  CAS  Google Scholar 

  35. Fradette L, Brocart B, Tanguy PA (2007) Comparison of mixing technologies for the production of concentrated emulsions. Chem Eng Res Des 85:1553–1560

    Article  CAS  Google Scholar 

  36. Freudig B, Tesch S, Schubert H (2003) Production of emulsions in high-pressure homogenizers—Part II: influence of cavitation on droplet breakup. Eng Life Sci 3:266–270

    Article  CAS  Google Scholar 

  37. Galazka VB, Dickinson E, Ledward DA (1996) Effect of high pressure on the emulsifying behaviour of β-lactoglobulin. Food Hydrocolloids 10:213–219

    Article  CAS  Google Scholar 

  38. Garti N (1999) What can nature offer from an emulsifier point of view: trends and progress? Colloids Surf A Physicochem Eng Asp 152:125–146

    Article  CAS  Google Scholar 

  39. Garti N (2001) Food emulsifiers and stabilizers. In: Eskin MNA, Robinson DS (eds) Food shelf life stability, chemical, biochemical and microbiological changes. CRC Press, Boca Raton, pp 211–263

    Google Scholar 

  40. Gu YS, Decker EA, McClements DJ (2004) Influence of pH and ι-carrageenan concentration on physicochemical properties and stability of β-lactoglobulin-stabilized oil-in-water emulsions. J Agric Food Chem 52:3626–3632

    Article  CAS  Google Scholar 

  41. Gurfinkel J, Aserin A, Garti N (2011) Interactions of surfactants in nonionic/anionic reverse hexagonal mesophases and solubilization of α-chymotrypsinogen A. Colloid Surf A Physicochem Eng Asp 392:322–328

    Article  CAS  Google Scholar 

  42. Hakansson A, Trägardh C, Bergenstahl B (2009) Studying the effects of adsorption, recoalescence and fragmentation in a high pressure homogenizer using a dynamic simulation model. Food Hydrocolloids 23:1177–1183

    Article  CAS  Google Scholar 

  43. Hakansson A, Trägardh C, Bergenstahl B (2009) Dynamic simulation of emulsion formation in a high pressure homogenizer. Chem Eng Sci 64:2915–2925

    Article  CAS  Google Scholar 

  44. Hickey S, Hagan SA, Kudryashov E, Buckin V (2010) Analysis of phase diagram and microstructural transitions in an ethyl oleate/water/Tween 80/Span 20 microemulsion system using high-resolution ultrasonic spectroscopy. Int J Pharm 388:213–222

    Article  CAS  Google Scholar 

  45. Innocente N, Biasutti M, Venir E, Spaziani M, Marchesini G (2009) Effect of high-pressure homogenization on droplet size distribution and rheological properties of ice cream mixes. J Dairy Sci 92:1864–1875

    Article  CAS  Google Scholar 

  46. Jafari SM, He Y, Bhandari B (2007) Effectiveness of encapsulating biopolymers to produce sub-micron emulsions by high energy emulsification techniques. Food Res Int 40:862–873

    Article  CAS  Google Scholar 

  47. Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids 22:1191–1202

    Article  CAS  Google Scholar 

  48. Koroleva MY, Yurtov EV (2012) Nanoemulsions: the properties, methods of preparation and promising applications. Russian Chem Rev 81:21–43

    Article  CAS  Google Scholar 

  49. Kralova I, Sjöblom J (2009) Surfactants used in food industry: a review. J Dispers Sci Technol 30:1363–1383

    Article  CAS  Google Scholar 

  50. Krog NJ, Sparso FV (2004) Food emulsifiers: their chemical and physical properties. Food Emulsions. Friberg SE, Larsson K., and Sjoblom J., Eds., Marcel Dekker, New York, In

    Google Scholar 

  51. Kuhn KR, Cunha RL (2012) Flaxseed oil–whey protein isolate emulsions: effect of high pressure homogenization. J Food Eng 111:449–457

    Article  CAS  Google Scholar 

  52. Lal SND, O′Connor CJ, Eyres L (2006) Application of emulsifier/stabilizers in dairy products of high rheology. Adv Colloid Interface Sci 16:123–126

    Google Scholar 

  53. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89–121

    Article  CAS  Google Scholar 

  54. Lee MH, Yu MW, Ka OL, Lin CC (2009) Enhancement of the encapsulation and transmembrane permeation of isoflavone-containing red clover extracts in phospholipid-based microemulsions using different extraction processes. J Agric Food Chem 57:9489–9495

    Article  CAS  Google Scholar 

  55. Leser ME, Sagalowicz L, Michel M, Watzke HJ (2006) Self-assembly of polar food lipids. Adv Colloid Interface Sci 123–126:125–136

    Article  CAS  Google Scholar 

  56. Lin CC, Lin HY, Chen HC, Yu MW, Lee MH (2009) Stability and characterisation of phospholipid-based curcumin-encapsulated microemulsions. Food Chem 116:923–928

    Article  CAS  Google Scholar 

  57. Liu F, Wang ZW (2010) Formulation of α-linolenic acid microemulsion free of co-surfactant. Chin Chem Lett 21:105–108

    Article  CAS  Google Scholar 

  58. Liu CH, Chang FY, Hung DK (2011) Terpene microemulsions for transdermal curcumin delivery: effects of terpenes and cosurfactants. Colloid Surf B-Biointerfaces 82:63–70

    Article  CAS  Google Scholar 

  59. Lizarraga MS, Pan LG, Añon MC, Santiago LG (2008) Stability of concentrated emulsions measured by optical and rheological methods. Effect of processing conditions—I Whey protein concentrate. Food Hydrocolloids 22:868–878

    Article  CAS  Google Scholar 

  60. Marie P, Perrier-Cornet JM, Gervais P (2002) Influence of major parameters in emulsification mechanisms using a high-pressure jet. J Food Eng 53:43–51

    Article  Google Scholar 

  61. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM (2006) Nanoemulsions: formation, structure, and physical properties. J Phys: Condens Matter 18:R635–R666

    Article  CAS  Google Scholar 

  62. McClements DJ (2004) Protein-stabilized emulsions. Curr Opin Colloid Interface Sci 9:305–313

    Article  CAS  Google Scholar 

  63. McClements DJ (2005) Food emulsions: principles, practice, and techniques. CRC Press, Washington, DC

    Google Scholar 

  64. McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8:1719–1729

    Article  CAS  Google Scholar 

  65. McClements DJ, Rao J (2011) Food-grade Nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51:285–330

    Article  CAS  Google Scholar 

  66. Mohan S, Narsimhan G (1997) Coalescence of protein-stabilized emulsions in a high-pressure homogenizer. J Colloid Interface Sci 192:1–15

    Article  CAS  Google Scholar 

  67. Muschiolik G (2007) Multiple emulsions for food use. Curr Opin Colloid Interface Sci 12:213–220

    Article  CAS  Google Scholar 

  68. Nguyen TTL, Edelen A, Neighbors B, Sabatini DA (2010) Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications. J Colloid Interface Sci 348:498–504

    Article  CAS  Google Scholar 

  69. Pal R (2000) Shear viscosity behavior of emulsions of two immiscible liquids. J Colloid Interface Sci 225:359–366

    Article  CAS  Google Scholar 

  70. Papadimitriou V, Sotiroudis TG, Xenakis A (2007) Olive oil microemulsions: enzymatic activities and structural characteristics. Langmuir 23:2071–2077

    Article  CAS  Google Scholar 

  71. Papadimitriou V, Pispas S, Syriou S, Pournara A, Zoumpanioti M, Sotiroudis TG, Xenakis A (2008) Biocompatible microemulsions based on limonene: formulation, structure, and applications. Langmuir 24:3380–3386

    Article  CAS  Google Scholar 

  72. Patel N, Schmid U, Lawrence MJ (2006) Phospholipid-based microemulsions suitable for use in foods. J Agric Food Chem 54:7817–7824

    Article  CAS  Google Scholar 

  73. Pawlik A, Cox PW, Norton IT (2010) Food grade duplex emulsions designed and stabilised with different osmotic pressures. J Colloid Interface Sci 352:59–67

    Article  CAS  Google Scholar 

  74. Perrechil FA, Cunha RL (2010) Oil-in-water emulsions stabilized by sodium caseinate: influence of pH, high-pressure homogenization and locust bean gum addition. J Food Eng 97:441–448

    Article  CAS  Google Scholar 

  75. Perrier-Cornet JM, Marie P, Gervais P (2005) Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization. J Food Eng 66:211–217

    Article  Google Scholar 

  76. Pey CM, Maestro A, Solé I, González C, Solans C, Gutiérrez JM (2006) Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study. Colloid Surf A Physicochem Eng Asp 288:144–150

    Article  CAS  Google Scholar 

  77. Phipps LW (1975) The fragmentation of oil drops in emulsions by a high-pressure homogenizer. J Phys D-Appl Phys 8:448–462

    Article  Google Scholar 

  78. Polizelli MA, Telis VRN, Amaral LQ, Feitosa E (2006) Formation and characterization of soy bean oil/surfactant/water microemulsions. Colloid Surf A Physicochem Eng Asp 281:230–236

    Article  CAS  Google Scholar 

  79. Polizelli MA, Santos AL, Feitosa E (2008) The effect of sodium chloride on the formation of W/O microemulsions in soy bean oil/surfactant/water systems and the solubilization of small hydrophilic molecules. Colloid Surf A Physicochem Eng Asp 315:130–135

    Article  CAS  Google Scholar 

  80. Qian C, McClements DJ (2011) Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids 25:1000–1008

    Article  CAS  Google Scholar 

  81. Rampon V, Riaublanc A, Anton M, Genot C, McClements DJ (2003) Evidence that homogenization of BSA-stabilized hexadecane-in-water emulsions induces structure modification of the nonadsorbed protein. J Agric Food Chem 51:5900–5905

    Article  CAS  Google Scholar 

  82. Rao J, McClements DJ (2011) Food-grade microemulsions, nanoemulsions and emulsions: fabrication from sucrose monopalmitate and lemon oil. Food Hydrocolloids 25:1413–1423

    Article  CAS  Google Scholar 

  83. Rao J, McClements DJ (2011) Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method. J Agric Food Chem 59:5026–5035

    Article  CAS  Google Scholar 

  84. Rodríguez MS, Albertengo LA, Agulló A (2002) Emulsification capacity of chitosan. Carbohydr Polym 48:271–276

    Article  Google Scholar 

  85. Sagalowicz L, Leser ME (2010) Delivery systems for liquid food products. Curr Opin Colloid Interface Sci 15:61–72

    Article  CAS  Google Scholar 

  86. San Martin-González MF, Roach A, Harte F (2009) Rheological properties of corn oil emulsions stabilized by commercial micellar casein and high pressure homogenization. LWT-Food Sci Technol 42:307–311

    Article  CAS  Google Scholar 

  87. Sandra S, Dalgleish DG (2005) Effects of ultra-high-pressure homogenization and heating on structural properties of casein micelles in reconstituted skim milk powder. Int Dairy J 15:1095–1104

    Article  CAS  Google Scholar 

  88. Santana RC, Perrechil FA, Sato ACK, Cunha RL (2011) Emulsifying properties of collagen fibers: effect of pH, protein concentration and homogenization pressure. Food Hydrocolloids 25:604–612

    Article  CAS  Google Scholar 

  89. Santana RC, Fasolin LH, Cunha RL (2012) Effects of a cosurfactant on the shear-dependent structures of systems composed of biocompatible ingredients. Colloid Surf A Physicochem Eng Asp 398:54–63

    Article  CAS  Google Scholar 

  90. Santana RC, Sato ACK, Cunha RL (2012) Emulsions stabilized by heat-treated collagen fibers. Food Hydrocolloids 26:73–81

    Article  CAS  Google Scholar 

  91. Schmidt KA, Smith DE (1989) Effects of varying homogenization pressure on the physical properties of vanilla ice cream. J Dairy Sci 72:378–384

    Article  Google Scholar 

  92. Schubert H, Ax K, Behrend O (2003) Product engineering of dispersed systems. Trends Food Sci Technol 14:9–16

    Article  CAS  Google Scholar 

  93. Schultz S, Wagner G, Urban K, Ulrich J (2004) High-pressure homogenization as a process for emulsion formation. Chem Eng Technol 27:361–368

    Article  CAS  Google Scholar 

  94. Schulz MB, Daniels R (2000) Hydroxypropylmethylcellulose (HPMC) as emulsifier for submicron emulsions: influence of molecular weight and substitution type on the droplet size after high-pressure homogenization. Eur J Pharm Biopharm 49:231–236

    Article  CAS  Google Scholar 

  95. Seekkuarachchi IN, Tanaka K, Kumazawa H (2006) Formation and characterization of submicrometer oil-in-water (O/W) emulsions, using high-energy emulsification. Ind Eng Chem Res 45:372–390

    Article  CAS  Google Scholar 

  96. Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M (2007) Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm 66:227–243

    Article  CAS  Google Scholar 

  97. Solè I, Maestro A, González C, Solans C, Gutiérrez JM (2006) Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir 22:8326–8332

    Article  CAS  Google Scholar 

  98. Solè I, Pey CM, Maestro A, González C, Porras M, Solans C, Gutiérrez JM (2010) Nano-emulsions prepared by the phase inversion composition method: preparation variables and scale up. J Colloid Interface Sci 344:417–423

    Article  CAS  Google Scholar 

  99. Sosa-Herrera MG, Berli CLA, Martínez-Padilla LP (2008) Physicochemical and rheological properties of oil-in-water emulsions prepared with sodium caseinate/gellan gum mixtures. Food Hydrocolloids 22:934–942

    Article  CAS  Google Scholar 

  100. Spernath A, Yaghmur A, Aserin A, Hoffman RE, Garti N (2002) Food-grade microemulsions based on nonionic emulsifiers: media to enhance lycopene solubilization. J Agric Food Chem 50:6917–6922

    Article  CAS  Google Scholar 

  101. Stang M, Schuchmann H, Schubert H (2001) Emulsification in high-pressure homogenizers. Eng Life Sci 1:151–157

    Article  CAS  Google Scholar 

  102. Steiner H, Teppner R, Brenn G, Vankova N, Tcholakova S, Denkov N (2006) Numerical simulation and experimental study of emulsification in a narrow-gap homogenizer. Chem Eng Sci 61:5841–5855

    Article  CAS  Google Scholar 

  103. Surh J, Decker EA, McClements DJ (2006) Influence of pH and pectin type on properties and stability of sodium-caseinate stabilized oil-in-water emulsions. Food Hydrocolloids 20:607–618

    Article  CAS  Google Scholar 

  104. Tadros TF (2008) Applied surfactants: principles and applications. Wiley, VCH, Weinheim

    Google Scholar 

  105. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108–109:303–318

    Article  CAS  Google Scholar 

  106. Tavano L, Alfano P, Muzzalupo R, de Cindio B (2011) Niosomes vs microemulsions: new carriers for topical delivery of Capsaicin. Colloid Surf B-Biointerfaces 87:333–339

    Article  CAS  Google Scholar 

  107. Tcholakova S, Denkov ND, Sidzhakova D, Ivanov IB, Campbell B (2003) Interrelation between drop size and protein adsorption at various emulsification conditions. Langmuir 19:5640–5649

    Article  CAS  Google Scholar 

  108. Tolosa LI, Forgiarini A, Moreno P, Salager JL (2006) Combined effects of formulation and stirring on emulsion drop size in the vicinity of three-phase behavior of surfactant-oil water systems. Ind Eng Chem Res 45:3810–3814

    Article  CAS  Google Scholar 

  109. van Aken GA, van Vliet T (2002) Flow-induced coalescence in protein-stabilized highly concentrated emulsions: role of shear-resisting connections between the droplets. Langmuir 18:7364–7370

    Article  CAS  Google Scholar 

  110. Walstra P, Smulders PEA (1998) Emulsion formation. In: Walstra P, Smulders PEA (eds) Modern aspects of emulsion science. The Royal Society of Chemistry, Cambridge, pp 56–98

    Chapter  Google Scholar 

  111. Windhab EJ, Dressler M, Feigl K, Fischer P, Megias-Alguacil D (2005) Emulsion processing—from single-drop deformation to design of complex processes and products. Chem Eng Sci 60:2101–2113

    Article  CAS  Google Scholar 

  112. Yaghmur A, Aserin A, Garti N (2002) Phase behavior of microemulsions based on food-grade nonionic surfactants: effect of polyols and short-chain alcohols. Colloid Surf A Physicochem Eng Asp 209:71–81

    Article  CAS  Google Scholar 

  113. Yuan JS, Ansari M, Samaan M, Acosta EJ (2008) Linker-based lecithin microemulsions for transdermal delivery of lidocaine. Int J Pharm 349:130–143

    Article  CAS  Google Scholar 

  114. Zhang H, Shen Y, Weng P, Zhao G, Feng F, Zheng X (2009) Antimicrobial activity of a food-grade fully dilutable microemulsion against Escherichia coli and Staphylococcus aureus. Int J Food Microbiol 135:211–215

    Article  CAS  Google Scholar 

  115. Zhang H, Cui Y, Zhu S, Feng F, Zheng X (2010) Characterization and antimicrobial activity of a pharmaceutical microemulsion. Int J Pharm 395:154–160

    Article  CAS  Google Scholar 

  116. Zhang H, Li D, Zhu S, Feng F, Zheng X (2011) Antibacterial activities of a food-grade dilution-stable microemulsion. J Food Saf 31:232–237

    Article  CAS  Google Scholar 

  117. Zheng M, Wang Z, Liu F, Mi Q, Wu J (2011) Study on the microstructure and rheological property of fish oil lyotropic liquid crystal. Colloid Surf A Physicochem Eng Asp 385:47–54

    Article  CAS  Google Scholar 

  118. Zhong F, Yu M, Luo C, Shoemaker CF, Li Y, Xia S, Ma J (2009) Formation and characterisation of mint oil/S and CS/water microemulsions. Food Chem 115:539–544

    Article  CAS  Google Scholar 

  119. Ziani K, Chang Y, McLandsborough L, McClements DJ (2011) Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. J Agric Food Chem 59:6247–6625

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Cunha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santana, R.C., Perrechil, F.A. & Cunha, R.L. High- and Low-Energy Emulsifications for Food Applications: A Focus on Process Parameters. Food Eng Rev 5, 107–122 (2013). https://doi.org/10.1007/s12393-013-9065-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-013-9065-4

Keywords

Navigation