Skip to main content
Log in

Advances in technical aspects of myocardial perfusion SPECT imaging

  • Major Achievements in Nuclear Cardiology
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

References

  1. Slomka PJ, Berman DS, Germano G. Applications and software techniques for integrated cardiac multimodality imaging. Expert Rev Cardiovasc Ther 2008;6:27-41.

    Article  PubMed  Google Scholar 

  2. Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 2007;298:317-23.

    Article  CAS  PubMed  Google Scholar 

  3. Babla H, Bai C, Conwell R. A triple-head solid state camera for cardiac single photon emission tomography (SPECT). In: Franks LA, Burger A, James RB, Barber HB, Doty FP, Roehrig H, editors. Proceedings of the SPIE. vol. 6319. 2005. p. 63190M.

  4. Lewin HC, Hyun MC. A clinical comparison of an upright triple-head digital detector system to a standard supine dual-head gamma camera (abstract). J Nucl Cardiol 2005;12:113-113.

    Article  Google Scholar 

  5. Bai C, Conwell R, Babla H, et al. Improving image quality and imaging efficiency using nSPEED. http://www.digirad.com/downloads_2007/nSPEED_white_paper.pdf. Accessed 30 May 2008.

  6. Maddahi J, Mahmarian J, Mendez R, et al. Prospective multi-center evaluation of rapid gated SPECT myocardial perfusion upright imaging (abstract). J Nucl Med 2008;49:2P.

    Google Scholar 

  7. www.CardiArc.com. Accessed 30 May 2008.

  8. Madsen MT. Recent advances in SPECT imaging. J Nucl Med 2007;48:661-73.

    Article  PubMed  Google Scholar 

  9. Arlt R, Rundquist DE. Room temperature semiconductor detectors for safeguards measurements. Nucl Instrum Methods Phys Res A 1996;380:455-61.

    Article  CAS  Google Scholar 

  10. O’Connor M. Evaluation of the CardiArc dedicated cardiac system (unpublished independent evaluation). Rochester, MN: Mayo Clinic; 2005.

  11. Sharir T, Ben-Haim S, Merzon K, et al. High-speed myocardial perfusion imaging Initial clinical comparison with conventional dual detector anger camera imaging. J Am Coll Cardiol Cardiovasc Imaging 2008;1:156-63.

    Google Scholar 

  12. Rousso B, Nagler M. Spectrum Dynamics LLC, assignee. Multi-dimensional image reconstruction. US patent 7176466. 13 Feb 2007.

  13. Hines H, Kayayan R, Colsher J, et al. Recommendations for implementing SPECT instrumentation quality control. Eur J Nucl Med Mol Imaging 1999;26:527-32.

    Article  CAS  Google Scholar 

  14. Patton J, Sandler M, Berman D, et al. D-SPECT: A new solid state camera for high speed molecular imaging. Soc Nuclear Med 2006;47:189-189.

    Google Scholar 

  15. Ben-Haim S, Hutton B, Van Gramberg D, et al. Simultaneous dual isotope myocardial perfusion scintigraphy (DI MPS)—Initial experience with fast D-SPECT (abstract). J Nucl Cardiol 2008;15:S2.

    Google Scholar 

  16. Berman D, SW H, Wolak A, et al. Stress thallium-201/rest Tc-99m sequential dual isotope high-speed myocardial perfusion imaging. Circulation 2008;118:S1010.

    Google Scholar 

  17. Sharir T, Ben Haim S, Slomka PJ, et al. Validation of quantitative analysis of high-speed myocardial perfusion imaging: Comparison to conventional SPECT imaging (abstract). J Nucl Cardiol 2008;15:S4.

    Article  Google Scholar 

  18. Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE. Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Phys Med Biol 1994;39:425-37.

    Article  CAS  PubMed  Google Scholar 

  19. Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 2003;50:315-20.

    Article  Google Scholar 

  20. Beekman FJ, Vastenhouw B. Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 2004;49:4579-92.

    Article  PubMed  Google Scholar 

  21. Funk T, Kirch DL, Koss JE, Botvinick E, Hasegawa BH. A novel approach to multipinhole SPECT for myocardial perfusion imaging. J Nucl Med 2006;47:595-602.

    PubMed  Google Scholar 

  22. Metzler SD, Bowsher JE, Smith MF, Jaszczak RJ. Analytic determination of pinhole collimator sensitivity with penetration. IEEE Trans Med Imaging 2001;20:730-41.

    Article  CAS  PubMed  Google Scholar 

  23. Funk T, Després P, Barber WC, Shah KS, Hasegawa BH. A multipinhole small animal SPECT system with submillimeter spatial resolution. Med Phys 2006;33:1259-68.

    Google Scholar 

  24. Steele PP, Kirch DL, Koss JE. Comparison of simultaneous dual-isotope multipinhole SPECT with rotational SPECT in a group of patients with coronary artery disease. J Nucl Med 2008;49:1080.

    Article  PubMed  Google Scholar 

  25. Volokh L, Hugg J, Blevis I, Asma E, Jansen F, Manjeshwar R. Effect of detector energy response on image quality of myocardial perfusion SPECT. Paper presented at IEEE nuclear science symposium and medical imaging conference, 19–26, 2008; Dresden.

  26. Blevis I, Tsukerman L, Volokh L, Hugg J, Jansen F, Bouhnik J. CZT gamma camera with pinhole collimator: Spectral measurements. Paper presented at IEEE 2008 nuclear science and medical imaging conference, 2008; Dreseden, Germany.

  27. Garcia EV, Tsukerman L, Keidar Z. 2.05: A new solid state, ultra fast cardiac multi-detector SPECT system. J Nucl Cardiol 2008;15:S3-S3.

    Article  Google Scholar 

  28. Hawman PC, Haines EJ. The cardiofocal collimator: A variable focus collimator for cardiac SPECT. Phys Med Biol 1994;39:439-50.

    Article  CAS  PubMed  Google Scholar 

  29. Vija A, Hawman E, Engdahl J. Analysis of a SPECT OSEM reconstruction method with 3D beam modeling and optional attenuation correction: Phantom studies. Paper presented at IEEE nuclear science symposium and medical imaging conference, 2003.

  30. Römer W, Reichel N, Vija HA, et al. Isotropic reconstruction of SPECT data using OSEM3D: Correlation with CT. Acad Radiol 2006;13:496-502.

    Article  PubMed  Google Scholar 

  31. Vija H, Chapman J, Ray M. IQ•SPECT technology white paper. Siemens Medical Solutions, USA. Mol Imaging 2008;1–7.

  32. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;1:113-22.

    Article  CAS  PubMed  Google Scholar 

  33. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306-16.

    CAS  PubMed  Google Scholar 

  34. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601-9.

    Article  CAS  PubMed  Google Scholar 

  35. El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000;41:1400-8.

    CAS  PubMed  Google Scholar 

  36. Metz CE. The geometric transfer function component for scintillation camera collimators with straight parallel holes. Phys Med Biol 1980;25:1059-70.

    Article  CAS  PubMed  Google Scholar 

  37. Kadrmas DJ, Frey EC, Karimi SS, Tsui BMW. Fast implementation of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 1998;43:857-73.

    Article  CAS  PubMed  Google Scholar 

  38. Ye J, Song X, Zhao Z, Da Silva AJ, Wiener JS, Shao L. Iterative SPECT reconstruction using matched filtering for improved image quality. IEEE Nucl Sci Symp Conf Rec 2006;4.

  39. Ye J, Shao L, Zhao Z, Durbin M. Iterative reconstruction with enhanced noise control filtering. WO patent WO/2007/034,342; 2007.

  40. Van Laere K, Koole M, Lemahieu I, Dierckx R. Image filtering in single-photon emission computed tomography: Principles and applications. Comput Med Imaging Graph 2001;25:127-33.

    Article  PubMed  Google Scholar 

  41. Venero CV, Ahlberg AW, Bateman TM, et al. Enhancement of nuclear cardiac laboratory efficiency—Multicenter evaluation of a new post-processing method with depth-dependent collimator resolution applied to full and half-time acquisitions. J Nucl Cardiol 2008;15:S4.

    Google Scholar 

  42. Bateman TM, Heller GV, McGhie AI, et al. 2.04: Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99m SPECT imaging. J Nucl Cardiol 2008;15:S3-S3.

    Article  Google Scholar 

  43. Tsui BMW, Hu HB, Gilland DR, Gullberg GT. Implementation of simultaneous attenuation and detector response correction in SPECT. IEEE Trans Nucl Sci 1988;35:778-83.

    Article  CAS  Google Scholar 

  44. DePuey E, Gadiraju R, Clark J, Thompson L, Anstett F, Shwartz S. OSEM and wide beam reconstruction (WBR) “half-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” filtered back projection. J Nucl Cardiol 2008;15:547-63.

    Google Scholar 

  45. Tsui BMW, Gullberg GT. The geometric transfer-function for cone and fan beam collimators. Phys Med Biol 1990;35:81-93.

    Article  CAS  PubMed  Google Scholar 

  46. Tsui BMW, Frey EC, Zhao X, Lalush DS, Johnston RE, McCartney WH. The importance and implementation of accurate 3D compensation methods for quantitative SPECT. Phys Med Biol 1994;39:509-30.

    Article  CAS  PubMed  Google Scholar 

  47. Bruyant PP. Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 2002;43:1343-58.

    PubMed  Google Scholar 

  48. Green PJ. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 1990;9:84-93.

    Article  CAS  PubMed  Google Scholar 

  49. Alenius S, Ruotsalainen U. Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med Mol Imaging 1997;24:258-65.

    CAS  Google Scholar 

  50. Vija AH, Zeintl J, Chapman JT, Hawman EG, Hornegger J. Development of rapid SPECT acquisition protocol for myocardial perfusion imaging. IEEE Nucl Sci Symp Conf Rec 2006;3:1811-6.

    Google Scholar 

  51. Ficaro EP, Kritzman JN, Corbett JR. 15.34: Effect of reconstruction parameters and acquisition times on myocardial perfusion distribution in normals. J Nucl Cardiol 2008;15:S20-S20.

    Article  Google Scholar 

  52. Zeintl J, Ding X, Vija AH, Hawman EG, Hornegger J, Kuwert T. Estimation accuracy of ejection fraction in gated cardiac SPECT/CT imaging using iterative reconstruction with 3D resolution recovery in rapid acquisition protocols. 2007 NSS ‘07 IEEE Nucl Sci Symp Conf Rec 2007;6:4491-6.

    Google Scholar 

  53. Ultraspect. www.UltraSPECT.com. Accessed 6 Sept 2008.

  54. Borges-Neto SPR, Shaw LK, et al. Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies. J Nucl Cardiol 2007;14:555-65.

    Article  PubMed  Google Scholar 

  55. DePuey EG, Bommireddipalli S, Beletsky I, et al. 2.01: Quarter-time myocardial perfusion SPECT wide beam reconstruction. J Nucl Cardiol 2008;15:S2-S2.

    Article  Google Scholar 

  56. Slomka PJ, Nishina H, Berman DS, et al. “Motion-frozen” display and quantification of myocardial perfusion. J Nucl Med 2004;45:1128-34.

    PubMed  Google Scholar 

  57. Suzuki Y, Slomka PJ, Wolak A, et al. Motion-frozen myocardial perfusion SPECT improves detection of coronary artery disease in obese patients. J Nucl Med 2008;49:1075-9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Daniel Berman has equity position in Spectrum Dynamics, Inc. We would like to acknowledge help of the following individuals who have sent material, data, and images relating to specific technologies: Gordon DePuey, Columbia University, NYC; Gary Heller University of Connecticut School of Medicine CT; Ernest V. Garcia, Emory University, Atlanta, GA; Hans Vija, Siemens Medical Solutions, Hoffman Estates, IL; Horace Hines and Angela Da Silva Philips, Malpitas, CA; Dennis Kirch, Nuclear Research, Denver, CO; Dalia Sherry, Spectrum Dynamics (Haifa, Israel); Terri Garner (CardiArc, In, TX); Richard Conwell (Digirad, San Diego, CA); Frank Anstett (GE HealthCare).

In addition, we would like to thank Joyoni Dey, University of Massachusetts, Worcester, and Gillian Haemer, University of Southern California, LA, for comments and proofreading the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr J. Slomka PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slomka, P.J., Patton, J.A., Berman, D.S. et al. Advances in technical aspects of myocardial perfusion SPECT imaging. J. Nucl. Cardiol. 16, 255–276 (2009). https://doi.org/10.1007/s12350-009-9052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-009-9052-6

Keywords

Navigation