Skip to main content

Advertisement

Log in

Metabolomics: a novel approach to identify potential diagnostic biomarkers and pathogenesis in Alzheimer’s disease

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Although the pathogenesis of Alzheimer’s disease (AD) is still not fully understood, it is acknowledged that intervention should be made at the early stage. Therefore, identifying biomarkers for the clinical diagnosis is critical. Metabolomics, a novel “omics”, uses methods based on low-molecular-weight molecules, with high-throughput evaluation of a large number of metabolites that may lead to the identification of new disease-specific biomarkers and the elucidation of pathophysiological mechanisms. This review discusses metabolomics investigations of AD and potential future developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prince M, Jackson J. Alzheimer’s Disease International. World Alzheimer Report 2009.

  2. Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol 2011, 7: 137–152.

    Article  PubMed  Google Scholar 

  3. Mayeux R, Reitz C, Brickman AM, Haan MN, Manly JJ, Glymour MM, et al. Operationalizing diagnostic criteria for Alzheimer’s disease and other age-related cognitive impairment-Part 1. Alzheimers Dement 2011, 7: 15–34.

    Article  PubMed  Google Scholar 

  4. Vellas B, Aisen PS, Sampaio C, Carrillo M, Scheltens P, Scherrer B, et al. Prevention trials in Alzheimer’s disease: an EU-US task force report. Prog Neurobiol 2011, 95: 594–600.

    Article  PubMed  Google Scholar 

  5. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011, 7: 257–262.

    Article  PubMed  Google Scholar 

  6. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 2010, 9: 702–716.

    Article  PubMed  CAS  Google Scholar 

  7. Herholz K, Ebmeier K. Clinical amyloid imaging in Alzheimer’s disease. Lancet Neurol 2011, 10: 667–670.

    Article  PubMed  CAS  Google Scholar 

  8. Li TQ, Wahlund LO. The search for neuroimaging biomarkers of Alzheimer’s disease with advanced MRI techniques. Acta Radiol 2011, 52: 211–222.

    Article  PubMed  Google Scholar 

  9. Humpel C. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 2011, 29: 26–32.

    Article  PubMed  CAS  Google Scholar 

  10. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011, 377: 1019–1031.

    Article  PubMed  Google Scholar 

  11. Herrup K. Reimagining Alzheimer’s disease—an age-based hypothesis. J Neurosci 2010, 30: 16755–16762.

    Article  PubMed  CAS  Google Scholar 

  12. Agnati LF, Guidolin D, Baluska F, Leo G, Barlow PW, Carone C, et al. A new hypothesis of pathogenesis based on the divorce between mitochondria and their host cells: possible relevance for Alzheimer’s disease. Curr Alzheimer Res 2010, 7: 307–322.

    Article  PubMed  CAS  Google Scholar 

  13. Qiu C, Xu W, Fratiglioni L. Vascular and psychosocial factors in Alzheimer’s disease: epidemiological evidence toward intervention. J Alzheimers Dis 2010, 20: 689–697.

    PubMed  Google Scholar 

  14. Li J, Wang YJ, Zhang M, Xu ZQ, Gao CY, Fang CQ, et al. Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology 2011, 76: 1485–1491.

    Article  PubMed  CAS  Google Scholar 

  15. Murray IV, Proza JF, Sohrabji F, Lawler JM. Vascular and metabolic dysfunction in Alzheimer’s disease: a review. Exp Biol Med (Maywood) 2011, 236: 772–782.

    Article  CAS  Google Scholar 

  16. Wang JH, Byun J, Pennathur S. Analytical approaches to metabolomics and applications to systems biology. Semin Nephrol 2010, 30: 500–511.

    Article  PubMed  CAS  Google Scholar 

  17. Gomase VS, Changbhale SS, Patil SA, Kale KV. Metabolomics. Curr Drug Metab 2008, 9: 89–98.

    Article  PubMed  CAS  Google Scholar 

  18. Ganti S, Weiss RH. Urine metabolomics for kidney cancer detection and biomarker discovery. Urol Oncol 2011, 29: 551–557.

    Article  PubMed  CAS  Google Scholar 

  19. Bernini P, Bertini I, Luchinat C, Tenori L, Tognaccini A. The cardiovascular risk of healthy individuals studied by NMR metabonomics of plasma samples. J Proteome Res 2011, 10: 4983–4992.

    Article  PubMed  CAS  Google Scholar 

  20. Bathen TF, Sitter B, Sjobakk TE, Tessem MB, Gribbestad IS. Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Res 2010, 70: 6692–6696.

    Article  PubMed  CAS  Google Scholar 

  21. Benahmed MA, Santelmo N, Elbayed K, Frossard N, Noll E, Canuet M, et al. The assessment of the quality of the graft in an animal model for lung transplantation using the metabolomics (1) H highresolution magic angle spinning NMR spectroscopy. Magn Reson Med 2011, doi: 10.1002/mrm.24110.

  22. Zhang A, Sun H, Wang P, Han Y, Wang X. Modern analytical techniques in metabolomics analysis. Analyst 2012, 137: 293–300.

    Article  PubMed  CAS  Google Scholar 

  23. Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics 2011, 7: 307–328.

    Article  PubMed  CAS  Google Scholar 

  24. Zhou B, Xiao JF, Tuli L, Ressom HW. LC-MS-based metabolomics. Mol Biosyst 2012, 8: 470–481.

    Article  PubMed  CAS  Google Scholar 

  25. Wang X, Sun H, Zhang A, Wang P, Han Y. Ultra-performance liquid chromatography coupled to mass spectrometry as a sensitive and powerful technology for metabolomic studies. J Sep Sci 2011, 34: 3451–3459.

    Article  PubMed  CAS  Google Scholar 

  26. Barbas C, Moraes EP, Villasenor A. Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples. J Pharm Biomed Anal 2011, 55: 823–831.

    Article  PubMed  CAS  Google Scholar 

  27. Ludwig C, Viant MR. Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem Anal 2010, 21: 22–32.

    Article  PubMed  CAS  Google Scholar 

  28. Koek MM, van der Kloet FM, Kleemann R, Kooistra T, Verheij ER, Hankemeier T. Semi-automated non-target processing in GC x GC-MS metabolomics analysis: applicability for biomedical studies. Metabolomics 2011, 7: 1–14.

    Article  PubMed  CAS  Google Scholar 

  29. Gokay O, Albert K. From single to multiple microcoil flow probe NMR and related capillary techniques: a review. Anal Bioanal Chem 2012, 402: 647–669.

    Article  PubMed  Google Scholar 

  30. Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS, et al. Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 2008, 131: 389–396.

    Article  PubMed  Google Scholar 

  31. Paige LA, Mitchell MW, Krishnan KR, Kaddurah-Daouk R, Steffens DC. A preliminary metabolomic analysis of older adults with and without depression. Int J Geriatr Psychiatry 2007, 22: 418–423.

    Article  PubMed  Google Scholar 

  32. Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, et al. Potential metabolite markers of schizophrenia. Mol Psychiatry 2011, doi:10.1038/mp.2011.131.

  33. Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 2001, 276: 21562–21570.

    Article  PubMed  CAS  Google Scholar 

  34. Higgins LS, Catalano R, Quon D, Cordell B. Transgenic mice expressing human beta-APP751, but not mice expressing beta-APP695, display early Alzheimer’s disease-like histopathology. Ann N Y Acad Sci 1993, 695: 224–227.

    Article  PubMed  CAS  Google Scholar 

  35. Salek RM, Xia J, Innes A, Sweatman BC, Adalbert R, Randle S, et al. A metabolomic study of the CRND8 transgenic mouse model of Alzheimer’s disease. Neurochem Int 2010, 56: 937–947.

    Article  PubMed  CAS  Google Scholar 

  36. Koch G, Esposito Z, Codeca C, Mori F, Kusayanagi H, Monteleone F, et al. Altered dopamine modulation of LTD-like plasticity in Alzheimer’s disease patients. Clin Neurophysiol 2011, 122: 703–707.

    Article  PubMed  CAS  Google Scholar 

  37. Madsen K, Neumann WJ, Holst K, Marner L, Haahr MT, Lehel S, et al. Cerebral serotonin 4 receptors and amyloid-beta in early Alzheimer’s disease. J Alzheimers Dis 2011, 26: 457–466.

    Article  PubMed  CAS  Google Scholar 

  38. Kaddurah-Daouk R, Rozen S, Matson W, Han X, Hulette CM, Burke JR, et al. Metabolomic changes in autopsy-confirmed Alzheimer’s disease. Alzheimers Dement 2011, 7: 309–317.

    Article  PubMed  Google Scholar 

  39. Han X. Lipid alterations in the earliest clinically recognizable stage of Alzheimer’s disease: implication of the role of lipids in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 2005, 2: 65–77.

    Article  PubMed  CAS  Google Scholar 

  40. Mielke MM, Bandaru VV, Haughey NJ, Rabins PV, Lyketsos CG, Carlson MC. Serum sphingomyelins and ceramides are early predictors of memory impairment. Neurobiol Aging 2010, 31: 17–24.

    Article  PubMed  CAS  Google Scholar 

  41. Li NJ, Liu WT, Li W, Li SQ, Chen XH, Bi KS, et al. Plasma metabolic profiling of Alzheimer’s disease by liquid chromatography/mass spectrometry. Clin Biochem 2010, 43: 992–997.

    Article  PubMed  CAS  Google Scholar 

  42. Wenk MR. Lipidomics: new tools and applications. Cell 2010, 143: 888–895.

    Article  PubMed  CAS  Google Scholar 

  43. Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, et al. Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS One 2011, 6: e21643.

    Article  PubMed  CAS  Google Scholar 

  44. Wang DC, Sun CH, Liu LY, Sun XH, Jin XW, Song WL, et al. Serum fatty acid profiles using GC-MS and multivariate statistical analysis: potential biomarkers of Alzheimer’s disease. Neurobiol Aging 2012, 33: 1057–1066.

    Article  PubMed  CAS  Google Scholar 

  45. Shepardson NE, Shankar GM, Selkoe DJ. Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies. Arch Neurol 2011, 68: 1239–1244.

    Article  PubMed  Google Scholar 

  46. Tukiainen T, Tynkkynen T, Makinen VP, Jylanki P, Kangas A, Hokkanen J, et al. A multi-metabolite analysis of serum by 1H NMR spectroscopy: early systemic signs of Alzheimer’s disease. Biochem Biophys Res Commun 2008, 375: 356–361.

    Article  PubMed  CAS  Google Scholar 

  47. Yaffe K, Kanaya A, Lindquist K, Simonsick EM, Harris T, Shorr RI, et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA 2004, 292: 2237–2242.

    Article  PubMed  CAS  Google Scholar 

  48. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the Human Metabolome Database. Nucleic Acids Res 2007, 35: D521–526.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wang or Sheng-Di Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, XH., Huang, Y., Wang, G. et al. Metabolomics: a novel approach to identify potential diagnostic biomarkers and pathogenesis in Alzheimer’s disease. Neurosci. Bull. 28, 641–648 (2012). https://doi.org/10.1007/s12264-012-1272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1272-0

Keywords

Navigation