Skip to main content
Log in

Gene expression analyses in acute myeloid leukaemia (AML): current status and perspectives

  • Basic Research-Review
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

Gene expression analyses based on the microarray technique allow the simultaneous investigation of the expression patterns of tens of thousands of genes. Given the enormous genetic variety of the diverse subtypes of acute myeloid leukaemia (AML), microarrays provide promising potential for efficient diagnostics, for a more detailed molecular subclassification, as well as for the characterization of new leukaemia subclasses. Also, gene expression analyses might allow the design of assays being able to predict the response to targeted therapy approaches. The robustness of this method is a further advantage. However, not all so far known subgroups of AML are reproducible by gene expression profiling, and the position of this novel method for diagnostics and for therapeutic strategies in AML has to be further evaluated in prospective studies. This review summarizes the recent developments and the current status of gene expression analyses in AML and discusses perspectives of this novel approach in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Haferlach T, Bacher U, Kern W, Schnittger S, Haferlach C. Diagnostic pathways in acute leukemias: a proposal for a multimodal approach. Ann Hematol, 86: 311–327, 2007

    Article  PubMed  Google Scholar 

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286: 531–537, 1999

    Article  PubMed  CAS  Google Scholar 

  • Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 1: 133–143, 2002

    Article  PubMed  CAS  Google Scholar 

  • Kohlmann A, Schoch C, Schnittger S, Dugas M, Hiddemann W, Kern W, et al. Molecular characterization of acute leukemias by use of microarray technology. Gene Chromosome Canc, 37: 396–405, 2003

    Article  CAS  Google Scholar 

  • Wouters BJ, Lowenberg B, Delwel R. A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects. Blood, 2008 (e-pub).

  • Raponi M, Lancet JE, Fan H, Dossey L, Lee G, Gojo I, et al. A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia. Blood, 111: 2589–2596, 2008

    Article  PubMed  CAS  Google Scholar 

  • Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood, 102: 2951–2959, 2003

    Article  PubMed  CAS  Google Scholar 

  • Haferlach T, Kohlmann A, Schnittger S, Dugas M, Hiddemann W, Kern W, et al. AML M3 and AML M3 variant each have a distinct gene expression signature but also share patterns different from other genetically defined AML subtypes. Gene chromosome Canc, 43: 113–127, 2005

    Article  CAS  Google Scholar 

  • Marasca R, Maffei R, Zucchini P, Castelli I, Saviola A, Martinelli S, et al. Gene expression profiling of acute promyelocytic leukaemia identifies two subtypes mainly associated with flt3 mutational status. Leukemia, 20: 103–114, 2006

    Article  PubMed  CAS  Google Scholar 

  • Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization classification of tumours: pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press, 2001.

    Google Scholar 

  • Haferlach T, Kohlmann A, Schnittger S, Dugas M, Hiddemann W, Kern W, et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood, 106: 1189–1198, 2005

    Article  PubMed  CAS  Google Scholar 

  • Debernardi S, Lillington DM, Chaplin T, Tomlinson S, Amess J, Rohatiner A, et al. Genome-wide analysis of acute myeloid leukemia with normal karyotype reveals a unique pattern of homeobox gene expression distinct from those with translocation-mediated fusion events 1. Gene Chromosome Canc, 37: 149–158, 2003

    Article  CAS  Google Scholar 

  • Kohlmann A, Schoch C, Dugas M, Schnittger S, Hiddemann W, Kern W, et al. New insights into MLL gene rearranged acute leukemias using gene expression profiling: shared pathways, lineage commitment, and partner genes. Leukemia, 19: 953–964, 2005

    Article  PubMed  CAS  Google Scholar 

  • Virtaneva K, Wright FA, Tanner SM, Yuan B, Lemon WJ, Caligiuri MA, et al. Expression profiling reveals fundamental biological differences in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics. Proc Natl Acad Sci USA, 98: 1124–1129, 2001

    Article  PubMed  CAS  Google Scholar 

  • Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med, 352: 254–266, 2005

    Article  PubMed  CAS  Google Scholar 

  • Falini B, Nicoletti I, Martelli MF, Mecucci C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood, 109: 874–885, 2007

    Article  PubMed  CAS  Google Scholar 

  • Verhaak RG, Goudswaard CS, van PW, Bijl MA, Sanders MA, Hugens W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood, 106: 3747–3754, 2005

    Article  PubMed  CAS  Google Scholar 

  • Alcalay M, Tiacci E, Bergomas R, Bigerna B, Venturini E, Minardi SP, et al. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood, 106: 899–902, 2005

    Article  PubMed  CAS  Google Scholar 

  • Wilson CS, Davidson GS, Martin SB, Andries E, Potter J, Harvey R, et al. Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood, 108: 685–696, 2006

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Kennedy A, Zhou X, Radtke I, Phillips LA, Shurtleff SA, et al. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias. Leukemia, 21: 2000–2009, 2007

    Article  PubMed  CAS  Google Scholar 

  • Gilliland DG, Griffin JD. Role of FLT3 in leukemia. Curr Opin Hematol, 9: 274–281, 2002

    Article  PubMed  Google Scholar 

  • Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood, 100: 59–66, 2002

    Article  PubMed  CAS  Google Scholar 

  • Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood, 99: 4326–4335, 2002

    Article  PubMed  CAS  Google Scholar 

  • Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia, 19: 1345–1349, 2005

    Article  PubMed  CAS  Google Scholar 

  • Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia, 12: 1333–1337, 1998

    Article  PubMed  CAS  Google Scholar 

  • Whitman SP, Ruppert AS, Radmacher MD, Mrozek K, Paschka P, Langer C, et al. FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood, 111: 1552–1559, 2008

    Article  PubMed  CAS  Google Scholar 

  • Neben K, Schnittger S, Brors B, Tews B, Kokocinski F, Haferlach T, et al. Distinct gene expression patterns associated with FLT3- and NRAS-activating mutations in acute myeloid leukemia with normal karyotype. Oncogene, 24: 1580–1588, 2005

    Article  PubMed  CAS  Google Scholar 

  • Lacayo NJ, Meshinchi S, Kinnunen P, Yu R, Wang Y, Stuber CM, et al. Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood, 104: 2646–2654, 2004

    Article  PubMed  CAS  Google Scholar 

  • Bullinger L, Dohner K, Kranz R, Stirner C, Frohling S, Scholl C, et al. An FLT3 gene-expression signature predicts clinical outcome in normal karyotype AML 2. Blood, 111: 4490–4495, 2008

    Article  PubMed  CAS  Google Scholar 

  • Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med, 350: 1605–1616, 2004

    Article  PubMed  CAS  Google Scholar 

  • Radmacher MD, Marcucci G, Ruppert AS, Mrozek K, Whitman SP, Vardiman JW, et al. Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B Study. Blood, 108: 1677–1683, 2006

    Article  PubMed  CAS  Google Scholar 

  • Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med, 358: 1909–1918, 2008

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA, 88: 10431–10434, 1991

    Article  PubMed  CAS  Google Scholar 

  • Bullinger L, Rucker FG, Kurz S, Du J, Scholl C, Sander S, et al. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood, 110: 1291–1300, 2007

    Article  PubMed  CAS  Google Scholar 

  • Cairoli R, Beghini A, Grillo G, Nadali G, Elice F, Ripamonti CB, et al. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood, 107: 3463–3468, 2006

    Article  PubMed  CAS  Google Scholar 

  • Bourquin JP, Subramanian A, Langebrake C, Reinhardt D, Bernard O, Ballerini P, et al. Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proc Natl Acad Sci USA, 103: 3339–3344, 2006

    Article  PubMed  CAS  Google Scholar 

  • Suela J, Alvarez S, Cifuentes F, Largo C, Ferreira BI, Blesa D, et al. DNA profiling analysis of 100 consecutive de novo acute myeloid leukemia cases reveals patterns of genomic instability that affect all cytogenetic risk groups. Leukemia, 21: 1224–1231, 2007

    Article  PubMed  CAS  Google Scholar 

  • Heuser M, Wingen LU, Steinemann D, Cario G, von NN, Tauscher M, et al. Gene-expression profiles and their association with drug resistance in adult acute myeloid leukemia. Haematologica, 90: 1484–1492, 2005

    PubMed  CAS  Google Scholar 

  • Langer C, Radmacher MD, Ruppert AS, Whitman SP, Paschka P, Mrozek K, et al. High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) Study. Blood, 111: 5371–5379, 2008

    Article  PubMed  CAS  Google Scholar 

  • Steinbach D, Schramm A, Eggert A, Onda M, Dawczynski K, Rump A, et al. Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin Cancer Res, 12: 2434–2441, 2006

    Article  PubMed  CAS  Google Scholar 

  • Willman CL. Has gene expression profiling improved diagnosis, classification, and outcome prediction in AML? Best Pract Res Clin Haematol, 21: 21–28, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Kohlmann A, Kipps TJ, Rassenti LZ, Downing JR, Shurtleff SA, Mills KI, et al. An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase. Br J Haematol, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Haferlach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacher, U., Kohlmann, A., Haferlach, C. et al. Gene expression analyses in acute myeloid leukaemia (AML): current status and perspectives. memo 1, 235–241 (2008). https://doi.org/10.1007/s12254-008-0077-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-008-0077-3

Keywords

Navigation