Skip to main content
Log in

Fossil Record and Age of the Asteridae

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The Asteridae is a group of some 80,000 species of flowering plants characterized by their fused corollas and iridoid compounds. Recent phylogenetic analyses have helped delimit the group and have identified four main clades within it; Cornales, Ericales, Lamiids and Campanulids, with the last two collectively known as the Euasteridae. A search for the oldest fossils representing asterids yielded a total of 261 records. Each of these fossils was evaluated as to the reliability of its identification. The oldest accepted fossils for each clade were used to estimate minimum ages for the whole of the Asteridae. The results suggest that the Asteridae dates back to at least the Turonian, Late Cretaceous (89.3 mya) and that by the Late Santonian-Early Campanian (83.5 mya) its four main clades were already represented in the fossil record.

Resumen

Las Asteridas son un grupo de unas 80,000 especies de plantas con flor caracterizadas por sus corolas fusionadas y compuestos iridoides. Análisis filogenéticos recientes han ayudado a delimitar al grupo y han identificado cuatro clados principales en él; Cornales, Ericales, Lamiidas y Campanulidas, con las últimas dos conocidas colectivamente como Euasteridas. Una búsqueda por los fósiles más antiguos que representan asteridas produjo un total de 261 registros. Cada uno de estos fósiles fue evaluado en cuanto a la confiabilidad de su identificación. Los fósiles aceptados más antiguos de cada clado se usaron para estimar edades mínimas para las Asteridas. Los resultados sugieren que las Asteridas datan al menos del Turoniano, Cretácico Tardío (89.3 ma) y que para el Santoniano Tardío-Campaniano Temprano (83.5 ma) sus cuatro clados principales ya estaban representados en el registro fósil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Literature Cited

  • Abbott, M. L. 1986. Petrified wood from the Paleocene, Black Peaks Formation, Big Bend National Park, Texas. Pages 141–142 in P. H. Pausé & R. G. Spears (eds.), Geology of the Big Bend area and Solitario Dome, Texas, West Texas Geological Society Fieldtrip March 12–15, 1986. Publ. 86–82.

  • Albach, D. C., P. S. Soltis, D. E. Soltis & R. Olmstead. 1998. Phylogenetic analysis of the asteridae s.l. based on sequences of four genes. American Journal of Botany 85(6 suppl): 111.

    Google Scholar 

  • ———, ———, ——— & ———. 2001. Phylogenetic analysis of asterids based on sequences of four genes. Annals of the Missouri Botanical Garden 88(2): 163–212.

    Google Scholar 

  • ———, H. M. Meudt & B. Oxelman. 2005. Piecing together the “new” Plantaginaceae. American Journal of Botany 92(2): 297-315.

    Google Scholar 

  • Angiosperm Phylogeny Group. 1998. An ordinal classification of the families of flowering plants. Annals of the Missouri Botanical Garden 85(4): 531–553.

    Google Scholar 

  • ———. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APGII. Botanical Journal of the Linnean Society 141(4): 399–436.

    Google Scholar 

  • ———. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APGIII. Botanical Journal of the Linnean Society 161(2): 105–121.

    Google Scholar 

  • Awasthi, N. 1969a. On the ocurrence of two new fossil woods belonging to the family Lecythidaceae in the Tertiary rocks of south India. The Palaeobotanist 18(1): 67–74.

    Google Scholar 

  • ———. 1969b. A fossil wood of Ebenaceae from the Tertiary of south India. The Palaeobotanist 18(2): 192–196.

    Google Scholar 

  • Backlund, A. 1996. Phylogeny of the dipsacales comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology, 243. Acta Universitatis Upsaliensis, Uppsala University, Uppsala, Sweden

  • ——— & M. J. Donoghue. 1996. Morphology and phylogeny of the order Dipsacales. In: A. Backlund. Phylogeny of the Dipsacales. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 243. Acta Universitatis Upsaliensis, Uppsala University, Uppsala, Sweden.

    Google Scholar 

  • Bande, M. B. 1986. Fossil wood of Gmelina Linn. (Verbenaceae) from the Deccan Intertrappean Beds of Nawargaon with comments on the nomenclature of Tertiary fossil woods. The Palaeobotanist 35(2): 165–170.

    Google Scholar 

  • Barron, E. 1992. Presencia de Fraxinus excelsior Linne (Oleaceae, Gentianales) en el Mioceno superior de la depresión Ceretana; implicaciones tafonómicas y paleoecológicas. Revista Española de Paleontología 7(2): 101–108.

    Google Scholar 

  • Basinger, J. F. & D. C. Christophel. 1985. Fossil flowers and leaves of the Ebenaceae from the Eocene of southern Australia. Canadian Journal of Botany 63(10): 1825–1843.

    Google Scholar 

  • Becker, H. F. 1961. Oligocene plants from the Upper Ruby River Basin, South-Western Montana. The Geological Society of America Memoir 82. Waverly Press, New York.

    Google Scholar 

  • Bell, C. D. & M. J. Donoghue. 2005. Dating the Dipsacales: Comparing models, genes, and evolutionary implications. American Journal of Botany 92(2): 284–296.

    CAS  Google Scholar 

  • Benton, M. J. & P. C. J. Donoghue. 2007. Paleontological evidence to date the tree of life. Molecular Biology and Evolution 24(1): 26–53.

    CAS  PubMed  Google Scholar 

  • Berry, E. W. 1914. The affinities and distribution of the lower Eocene flora of Southeastern North America. Proceedings of the American Philosophical Society 53(214): 129–250.

    Google Scholar 

  • ———. 1916. The lower Eocene floras of Southeastern North America. U. S. Geological Survey Professional Paper 91: 1–481.

    Google Scholar 

  • ———. 1922. A new genus of fossil fruit (Calatoloides, Eocene, Texas). American Journal of Science 5th series 3: 251–253.

    Google Scholar 

  • ———. 1930. Revision of the lower Eocene Wilcox flora of the southeastern States, with descriptions of new species, chiefly from Tennessee and Kentucky. U. S. Geological Survey Professional Paper 156: 1–196.

    Google Scholar 

  • ———. 1934. A lower lance florule from Harding County, South Dakota. U. S. Geological Survey Professional Paper 185-F: 127–133.

    Google Scholar 

  • Bones, T. J. 1979. Atlas of fossil fruits and seeds from North Central Oregon. OMSI Occasional Papers in Natural Science 1: 5–23

    Google Scholar 

  • Bremer, K., A. Backlund, B. Sennblad, U. Swenson, K. Andreasen, M. Hjertson, J. Lundberg, M. Backlund & B. Bremer. 2001. A Phylogenetic analysis of 100+ genera and 50+ families of euasterids based on morphological and molecular data with notes on possible higher level morphological synapomorphies. Plant Systematics and Evolution 229(3–4): 137–169.

    CAS  Google Scholar 

  • Bremer, B., K. Bremer, N. Heidari, P. Erixon, R. G. Olmstead, A. A. Anderberg, M. Källersjö & E. Barkhordarian. 2002. Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Molecular Phylogenetics and Evolution 24(2): 274–301.

    CAS  PubMed  Google Scholar 

  • ———, E. M. Friis & B. Bremer. 2004. Molecular phylogenetic dating of asterid flowering plants shows early cretaceous diversification. Systematic Biology 53(3): 496–505.

    PubMed  Google Scholar 

  • Bromham, L. & D. Penny. 2003. The modern molecular clock. Nature Reviews Genetics 4(3): 216–224.

    CAS  PubMed  Google Scholar 

  • Brown, R. W. 1962. Paleocene flora of the Rocky Mountains and Great Plains. U. S. Geological Survey Professional Paper 375: 1–119.

    Google Scholar 

  • Call, V. B. & D. L. Dilcher. 1997. The fossil record of Eucommia (Eucommiaceae) in North America. American Journal of Botany 84(6): 798–814.

    Google Scholar 

  • Chandler, M. E. J. 1962. The Lower Tertiary floras of Southern England. II. Flora of the Pipe-Clay Series of Dorset (Lower Bagshot). British Museum (Natural History). London, UK.

  • ———. 1964. The Lower Tertiary floras of Southern England. IV. A Summary and Survey of Findings in the light of Recent Botanical Observations. British Museum (Natural History). London, UK.

  • Chandler, G. T. & G. M. Plunkett. 2004. Evolution in Apiales: nuclear and chloroplast markers together in (almost) perfect harmony. Botanical Journal of the Linnean Society 144(2): 123–147.

    Google Scholar 

  • Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. D. Duvall, R. A. Price, H. G. Hills, Y. Qiu, K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark, M. Hedrén, B. S. Gaut, R. K. Jansen, K. Kim, C. F. Wimpee, J. F. Smith, G. R. Furnier, S. H. Strauss, Q. Xiang, G. M. Plunkett, P. S. Soltis, S. M. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H., Jr. Learn, S. W. Graham, S. C. H. Barrett, S. Dayanadan & V. A. Albert. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 40(3): 528–580.

    Google Scholar 

  • Chelebayeva, A. I. 1984. Rod Cordia (Boraginaceae) v Paleogene Kamchatki i sopredel’nykh territoriy [The genus Cordia (Boraginaceae) from the Paleogene of Kamtchatka and adjacent territories]. Botanicheskiy Zhurnal 69(5): 605–615.

    Google Scholar 

  • Christophel, D. C. & J. F. Basinger. 1982. Earliest floral evidence for the Ebenaceae in Australia. Nature (London) 296(5856): 439–441.

    Google Scholar 

  • Cockerell, T. D. A. 1926. The antiquity of the Labiatae or Mint Family. Nature 118(2976): 696.

    Google Scholar 

  • ———. 1927. A supposed fossil catmint. Torreya 27(3): 54.

    Google Scholar 

  • Collinson, M. E. 1983. Fossil plants of the London Clay. Palaeontological Association Field Guides to Fossils No. 1. The Palaeontological Association. London.

  • ———. 1988. The special significance of the Middle Eocene fruit and seed flora from Messel, West Germany. Courier Forschungsinstitut Senckenberg 107: 187–197.

    Google Scholar 

  • ———, M. C. Boulter & P. L. Holmes. 1993. Magnoliophyta (‘Angiospermae’). Pages 809–841 in M. J. Benton (ed.), The fossil record 2. Chapman and Hall. London, UK.

    Google Scholar 

  • Crane, P. R. & P. Herendeen. 1996. Cretaceous floras containing angiosperm flowers and fruits from eastern North America. Review of Palaeobotany and Palynology 90(3–4): 319–337.

    Google Scholar 

  • ———, ——— & E. M. Friis. 2004. Fossils and plant phylogeny. American Journal of Botany 91(10): 1683–1699.

    Google Scholar 

  • Crepet, W. L. 1996. Timing in the evolution of derived floral characters: Upper Cretaceous (Turonian) taxa with tricolpate and tricolpate-derived pollen. Review of Palaeobotany and Palynology 90(3–4): 339–359.

    Google Scholar 

  • ——— & T. F. Stuessy. 1978. A reinvestigation of the fossil Viguiera cronquistii (Compositae). Brittonia 30(4): 483–491.

    Google Scholar 

  • ——— & C. P. Daghlian. 1981. Lower Eocene and Paleocene Gentianaceae: Floral and Palynological Evidence. Science, new series 214(4516): 75–77.

    CAS  Google Scholar 

  • ———, K. C. Nixon & M. A. Gandolfo. 2004. Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. American Journal of Botany 91(10): 1666–1682.

    Google Scholar 

  • Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York, NY, USA.

    Google Scholar 

  • Dilcher, D. L. & G. E. Dolph. 1970. Fossil Leaves of Dendropanax from Eocene Sediments of Southeastern North America. American Journal of Botany 57(2): 153–160.

    Google Scholar 

  • Donoghue, P. C. J. & M. J. Benton. 2007. Rocks and clocks: calibrating the tree of life using fossils and molecules. Trends in Ecology and Evolution 22(8): 424–431.

    PubMed  Google Scholar 

  • Donoghue, M. J., C. D. Bell & R. C. Winkworth. 2003. The evolution of reproductive characters in Dipsacales. International Journal of Plant Sciences 164(5 suppl): S453–S464.

    Google Scholar 

  • Elsik, W. C. 1968. Palynology of a Paleocene Rockdale lignite, Milam county, Texas. II. Morphology and taxonomy (end). Pollen et Spores 10(3): 599–664.

    Google Scholar 

  • Fan, C. & Q.-Y. Xiang. 2003. Phylogenetic analyses of Cornales based on 26S rRNA and combined 26S rDNA-matK-rbcL sequence data. American Journal of Botany 90(9): 1357–1372.

    CAS  Google Scholar 

  • Friis, E. M. 1984. Preliminary report of Upper Cretaceous angiosperms reproductive organs from Sweden and their level of organization. Annals of the Missouri Botanical Garden 71(2): 403–418.

    Google Scholar 

  • ———. 1985. Actinocalyx gen. nov., sympetalous angiosperm flowers from the Upper Cretaceous of Southern Sweden. Review of Palaeobotany and Palynology 45(3–4): 171–183.

    Google Scholar 

  • ———. 1990. Silvianthemum suecicum gen. et sp. nov., a new saxifragalean flower from the Late Cretaceous of Sweden. Biologiske Skrifter, Det Kongelige Danske Videnskabernes Selskab 36: 1–35.

    Google Scholar 

  • ——— & A. Skarby. 1982. Scandianthus gen. nov., Angiosperm flowers of Saxifragalean Affinity from the Upper Cretaceous of Southern Sweden. Annals of Botany new series 50(5): 569–583.

    Google Scholar 

  • ———, K. R. Pedersen & P. R. Crane. 2006. Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Palaeogeography, Palaeoclimatology, Palaeoecology 232(2–4): 251–293.

    Google Scholar 

  • Gabel, M. L. 1987. A fossil Lithospermum (Boraginaceae) from the Tertiary of South Dakota. American Journal of Botany 74(11): 1690–1693.

    Google Scholar 

  • Gandolfo, M. A., K. C. Nixon & W. L. Crepet. 1998. Tylerianthus crossmanensis gen. et sp. nov. (aff. Hydrangeaceae) from the Upper Cretaceous of New Jersey. American Journal of Botany 85(3): 376–386.

    Google Scholar 

  • Geuten, K., E. Smets, P. Schols, Y.-M. Yuan, S. Janssens, P. Küpfer & N. Pyck. 2004. Conflicting phylogenies of balsaminoid families and the polytomy in Ericales: combining data in a Bayesian framework. Molecular Phylogenetics and Evolution 31(2): 711–729.

    CAS  PubMed  Google Scholar 

  • Gibson, N., K. W. Kiernan & M. K. Macphail. 1987. A fossil bolster plant from the King River, Tasmania. Papers and Proceedings of the Royal Society of Tasmania 121: 35–42.

    Google Scholar 

  • Giraud, B., R. Bussert & E. Schrank. 1992. A new theacean wood from the Cretaceous of northern Sudan. Review of Palaeobotany and Palynology 75(3–4): 289–299.

    Google Scholar 

  • Goloboff, P. A. 1999. NONA version 2.0. Program distributed by the author. Tucumán, Argentina. <www.cladistics.com>.

  • Gradstein, F. M., J. G. Ogg, A. G. Smith, W. Bleeker & L. J. Lourens. 2004. A New Geologic Time Scale, with special reference to Precambrian and Neogene from the Dabie Mountains, central China. Episodes 27(2): 83–100.

    Google Scholar 

  • Graham, A. 1977. New records of Pelliceria (Theaceae/Pelliceriaceae) in the Tertiary of the Caribbean. Biotropica 9(1): 48–52.

    Google Scholar 

  • ———. 1996. A contribution to the geologic history of the Compositae. Pages 123–140 in D. J. N. Hind & H. J. Beentje (eds.), Compositae: Systematics. Proceedings of the International Compositae Conference, Kew, 1994. Vol. 1.The Royal Botanic Gardens, Kew.

  • ———. 1999. Studies in Neotropical paleobotany; XIII, An Oligo-Miocene palynoflora from Simojovel (Chiapas, Mexico). American Journal of Botany 86(1): 17–31.

    Google Scholar 

  • ———. 2009. Fossil record of the Rubiaceae. Annals of the Missouri Botanical Garden 96(1): 90–108.

    Google Scholar 

  • ——— & D. M. Jarzen. 1969. Studies in Neotropical Paleobotany. I. The Oligocene Communities of Puerto Rico. Annals of the Missouri Botanical Garden 56(3): 308–357.

    Google Scholar 

  • Graur, D. & W. Martin. 2004. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics 20(2): 80–86.

    CAS  PubMed  Google Scholar 

  • Gros, J. P. 1993. Xylotomies d’un nouveau bois d’Apocynaceae du Cenozoique de France, Euholarrhenoxylon aisnense n. g. et n.sp. et du bois actuel de comparaison, Holarrhena floribunda (G. Don) Dur & Schinz, Apocynaceae. Bulletin Mensuel—Societe Linneenne de Lyon, (France) 62(1): 11–25.

    Google Scholar 

  • Grote, P. J. & D. L. Dilcher. 1989. Investigations of angiosperms from the Eocene of North America; a new genus of Theaceae based on fruit and seed remains. Botanical Gazette 150(2): 190–206.

    Google Scholar 

  • ——— & ———. 1992. Fruits and Seeds of Tribe Gordonieae (Theaceae) from the Eocene of North America. American Journal of Botany 79(7): 744–753.

    Google Scholar 

  • Hedges, S. B. & S. Kumar. 2003. Genomic clocks and evolutionary timescales. Trends in Genetics 19(4): 200–206.

    Google Scholar 

  • Herendeen, P. S., S. Magallón-Puebla, R. Lupia, P. R. Crane & J. Kobylinska. 1999. A preliminary conspectus of the Allon Flora from the Late Cretaceous (Late Santonian) of Central Georgia, U.S.A. Annals of the Missouri Botanical Garden 86(2): 407–471.

    Google Scholar 

  • Hermsen, E. J. & J. R. Hendricks. 2008. W(h)ither fossils? Studying morphological character evolution in the age of molecular sequences. Annals of the Missouri Botanical Garden 95(1): 72–100.

    Google Scholar 

  • ———, K. C. Nixon & W. L. Crepet. 2006. The impact of extinct taxa on understanding the early evolution of Angiosperm clades: an example incorporating fossil reproductive structures of Saxifragales. Plant Systematics and Evolution 260(2–4): 141–169.

    Google Scholar 

  • Hufford, L. 1992. Phylogeny of Asteridae: An Introduction. Annals of the Missouri Botanical Garden 79(2): 207–208.

    Google Scholar 

  • Huzioka, K. 1961. A new Palaeogene species of the genus Eucommia from Hokkaido, Japan. Transactions and Proceedings of the Palaeontological Society of Japan. New Series 41: 9–12.

    Google Scholar 

  • Kårehed, J. 2001. Multiple origin of the tropical forest tree family Icacinaceae. American Journal of Botany 88(12): 2259–2274.

    Google Scholar 

  • Keller, J. A., P. S. Herendeen & P. R. Crane. 1996. Fossil flowers and fruits of the Actinidiaceae from the Campanian (Late Cretaceous) of Georgia. American Journal of Botany 83(4): 528–539.

    Google Scholar 

  • Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, New York, USA.

    Google Scholar 

  • Kirchheimer, F. 1949. Die Symplocaceen der erdgeschichtlichen Vergangenheit. Palaeontographica Abteilung B: Palaeophytologie 90: 1–50.

    Google Scholar 

  • Knapp, S. 2002. Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. Journal of Experimental Botany 53(377): 2001–2022.

    CAS  PubMed  Google Scholar 

  • Knobloch, E. & D. H. Mai. 1986. Monographie der Fruchte and Samen in der Kreide von Mitteleuropa. Rozpravy Ustredniho Ustavu Geologickeho Praha 47: 1–219.

    Google Scholar 

  • Lagenheim, J. H., B. L. Hackner & A. Bartlett. 1967. Mangrove pollen at the depositional site of Oligo-Miocene amber from Chiapas, Mexico. Botanical Museum Leaflets 21(10): 289–324.

    Google Scholar 

  • Łańcucka-Środoniowa, M. 1977. New herbs described from the Tertiary of Poland. Acta Palaeobotanica 18(1): 37–44.

    Google Scholar 

  • ———. 1979. Macroscopical plant remains from the freshwater Miocene of the Nowy Sacz Basin (West Carpathians, Poland). Acta Palaeobotanica 20(1): 3–117.

    Google Scholar 

  • Langley, C. H. & W. M. Fitch. 1974. An estimation of the constancy of the rate of molecular evolution. Journal of Molecular Evolution 3(3): 161–177.

    CAS  PubMed  Google Scholar 

  • Leopold, E. B. & S. T. Clay-Poole. 2001. Florissant leaf and pollen floras of Colorado compared; climatic implications. Pages 17–69 in E. Evanoff, G. Wodzicki, M. Kathryn & K. R. Johnson. Fossil flora and stratigraphy of the Florissant Formation, Colorado. Proceedings of the Denver Museum of Natural History 4, no. 1.

  • Lott, T. A., S. R. Manchester & D. L. Dilcher. 1998. A unique and complete polemoniaceous plant from the middle Eocene of Utah, USA. Review of Palaeobotany and Palynology 104(1): 39–49.

    Google Scholar 

  • Lundberg, J. & K. Bremer. 2003. A phylogenetic study of the Order Asterales using one morphological and three molecular data sets. International Journal of Plant Sciences 164(4): 553–578.

    CAS  Google Scholar 

  • MacGinitie, H. D. 1953. Fossil plants of the Florissant Beds, Colorado. Carnegie Institution of Washington Contributions to Paleontology 559: 1–198.

    Google Scholar 

  • ———. 1969. The Eocene Green River flora of Northwestern Colorado and Northastern Utah. University of California Publications in Geological Sciences 83. Berkeley, USA.

    Google Scholar 

  • Macphail, M. K. & R. S. Hill. 1994. K-Ar dated palynofloras in Tasmania; 1, Early Oligocene, Proteacidites tuberculatus Zone sediments, Wilmot Dam, northwestern Tasmania. Papers and Proceedings of the Royal Society of Tasmania 128: 1–15.

    Google Scholar 

  • Mai, D. H. 1987. Neue Fruchte und Samen aus Palaozanen Ablagerungen Mitteleuropas. Feddes Repertorium 98: 197–229 + 10pl.

    Google Scholar 

  • ——— & E. Martinetto. 2006. A reconsideration of the diversity of Symplocos in the European Neogene on the basis of fruit morphology. Review of Palaeobotany and Palynology 140(1–2): 1–26.

    Google Scholar 

  • Magallón, S. A. 2004. Dating lineages: Molecular and paleontological approaches to the temporal framework of clades. International Journal of Plant Sciences 165(4 suppl): S7–S21.

    Google Scholar 

  • ——— & S. R. S. Cevallos-Ferriz. 1994. Eucommia constans n. sp. fruits from Upper Cenozoic strata of Puebla, Mexico: Morphological and anatomical comparison with Eucommia ulmoides Oliver. International Journal of Plant Sciences 155(1): 80–85.

    Google Scholar 

  • ———, P. R. Crane & P. S. Herendeen. 1999. Phylogenetic Pattern, Diversity, and Diversification of Eudicots. Annals of the Missouri Botanical Garden 86(2): 297–372.

    Google Scholar 

  • Manchester, S. R. 1994. Fruits and seeds of the middle Eocene Nutbeds Flora, Clarno Formation, North Central Oregon. Palaeontographica Americana 58: 1–205.

    Google Scholar 

  • ———. 1999. Biogeographical Relationships of North American Tertiary Floras. Annals of the Missouri Botanical Garden 86(2): 472–522.

    Google Scholar 

  • ———. 2001. Update on the megafossil flora of Florissant, Colorado. Pages 137–161 in E. Evanoff, G. Wodzicki, M. Kathryn & K. R. Johnson (eds.), Fossil flora and stratigraphy of the Florissant Formation, Colorado. Proceedings of the Denver Museum of Natural History 4, no. 1.

  • ———. 2002. Leaves and fruits of Davidia (Cornales) from the Paleocene of North America. Systematic Botany 27(2): 368–382.

    Google Scholar 

  • ——— & M. J. Donoghue. 1995. Winged fruits of Linneeae (Caprifoliaceae) in the Tertiary of Western North America: Diplodipelta gen. nov. International Journal of Plant Sciences 156(5): 709–722.

    Google Scholar 

  • ———, Z.-D. Chen, A.-M. Lu & K. Uemura. 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. Journal of Systematics and Evolution 47(1): 1–42.

    Google Scholar 

  • Martin, H. A. 1977. The history of Ilex (Aquifoliaceae) with special reference to Australia: evidence from pollen. Australian Journal of Botany 25(6): 655–673.

    Google Scholar 

  • ———. 2000. Re-assignment of the affinities of the fossil pollen type Tricolpites trioblatus Mildenhall and Pocknall to Wilsonia (Convolvulaceae) and a reassessment of the ecological interpretations. Review of Palaeobotany and Palynology 111(3–4): 237–251.

    PubMed  Google Scholar 

  • Martínez-Millán, M., W. L. Crepet & K. C. Nixon. 2009. Pentapetalum trifasciculandricus gen. et sp. nov., a thealean fossil flower from the Raritan Formation, New Jersey, USA (Turonian, Late Cretaceous). American Journal of Botany 96(5): 933–949.

    Google Scholar 

  • Massalongo, A. 1851. Sopra le piante fossili dei terreni terziarj del Vicentino. A. Bianchi Padova.

  • Mathewes, R. W. & R. C. Brooke. 1971. Fossil Taxodiaceae and new angiosperm macrofossils from Quilchema British Columbia. Syesis 4(1–2): 209–216.

    Google Scholar 

  • Mathur, A. K. & U. B. Mathur. 1985. Boraginaceae (angiosperm) seeds and their bearing on the age of Lameta Beds of Gujarat. Current Science 54(20): 1070–1071.

    Google Scholar 

  • Mehrotra, R. C. 2000. Study of plant megafossils from the Tura Formation of Nangwalbibra, Garo Hills, Meghalaya, India. The Palaeobotanist 49(2): 255–237.

    Google Scholar 

  • Meijer, J. J. F. 2000. Fossil woods from the late cretaceous Aachen formation. Review of Palaeobotany and Palynology 112(4): 297–336.

    PubMed  Google Scholar 

  • Melchior, R. C. 1976. Oreopanax dakotensis, a new species of the Araliaceae from the Paleocene of North Dakota. Scientific Publications of the Science Museum of Minnesota new series 3(3): 1–8.

    Google Scholar 

  • Mildenhall, D. C. 1980. New Zealand late Cretaceous and Cenozoic plant biogeography: a contibution. Palaeogeography, Palaeoclimatology, Palaeoecology 31(3–4): 197–233.

    Google Scholar 

  • Nixon, K. C. 2002. Winclada ver. 1.00.08. Published by the author, Ithaca, NY, USA. <www.cladistics.com>.

  • ——— & W. L. Crepet. 1993. Late cretaceous fossil flowers with ericalean affinity. American Journal of Botany 80(6): 616–623.

    Google Scholar 

  • Olmstead, R. G., H. J. Michaels, K. M. Scott & J. D. Palmer. 1992. Monophyly of the Asteridae and Identification of Their Major Lineages Inferred From DNA Sequences of rbcL. Annals of the Missouri Botanical Garden 79(2): 249–265.

    Google Scholar 

  • ———, B. Bremer, K. M. Scott & J. D. Palmer. 1993. A parsimony analysis of the Asteridae sensu lato Based on rbcL Sequences. Annals of the Missouri Botanical Garden 80(3): 700–722.

    Google Scholar 

  • Oxelman, B., P. Kornhall, R. G. Olmstead & B. Bremer. 2005. Further disintegration of Scrophulariaceae. Taxon 54(2): 411–425.

    Google Scholar 

  • Piel, K. M. 1971. Palynology of Oligocene sediments from central British Columbia. Canadian Journal of Botany 49(11): 1885–1920 + 17pl.

    Google Scholar 

  • Pigg, K. B., S. R. Manchester & M. L. DeVore. 2008. Fruits of Icacinaceae (Tribe Iodeae) from the Late Paleocene of western North America. American Journal of Botany 95(7): 824–832.

    Google Scholar 

  • Pocknall, D. T. 1987. Paleoenvironments and age of the Wasatch Formation (Eocene), Powder River Basin, Wyoming. Palaios 2(4): 368–376.

    Google Scholar 

  • Pole, M. S. 1996. Plant macrofossils from the Foulden Hills Diatomite (Miocene), central Otago, New Zealand. Journal of the Royal Society of New Zealand 26(1): 1–39.

    Article  Google Scholar 

  • Prakash, U. & R. Dayal. 1964. Barringtonioxylon eopterocarpum sp. nov., a fossil wood of Lecythidaceae from the Deccan Intertrappean beds of Mahurzari. The Palaeobotanist 13(1): 25–29.

    Google Scholar 

  • ———. & P. P. Tripathi. 1969. Fossil woods from the Tipam sandstones near Hailakandi, Assam. The Palaeobotanist 18(2): 183–191.

    Google Scholar 

  • Prasad, M. 1988. Some more fossil woods from the lower Siwalik sediments of Kalagarh, Uttar Pradesh, India. Geophytology 18(2): 135–144 + 3 pl.

    Google Scholar 

  • ———. 1993. Siwalik (middle Miocene) woods from the Kalagarh area in the Himalayan foot hills and their bearing on palaeoclimate and phytogeography. Review of Palaeobotany and Palynology 76(1): 49–82.

    Google Scholar 

  • ——— & U. M. S. Pradhan. 1998. Study on plant fossils from the siwalik sediments of far western Nepal. The Palaeobotanist 47(1): 99–109.

    Google Scholar 

  • Pulquerio, M. J. F. & R. A. Nichols. 2007. Dates from the molecular clock: how wrong can they be? Trends in Ecology and Evolution 22(4): 180–184.

    PubMed  Google Scholar 

  • Reid, E. M. & M. E. J. Chandler. 1926. Catalogue of Cainzoic plants in the Department of Geology. Vol. 1. The Brembridge Flora. British Museum (Natural History), London, UK.

    Google Scholar 

  • ——— & ———. 1933. The London clay flora. British Museum (Natural History), London, UK.

    Google Scholar 

  • Rodriguez de Sarmiento, M. N. & J. Durango de Cabrera. 1995. Hallazgos de Remijia tenuiflorifolla Berry (Rubiaceae) con restos fungicos, Laguna del Hunco, Terciario, Chubut, Argentina. Acta Geologica Leopoldensia 42: 139–145.

    Google Scholar 

  • Salard-Cheboldaeff, M. 1978. Sur la palynoflore Maestrichtiene et Tertiaires du Bassin sédimentaire littoral du Cameroun. Pollen et Spores 20(2): 215–260.

    Google Scholar 

  • Sanderson, M. J. 1997. A Nonparametric Approach to Estimating Divergence Times in the Absence of Rate Constancy. Molecular Biology and Evolution 14(12): 1218–1231.

    CAS  Google Scholar 

  • ———. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19(1): 101–109.

    CAS  PubMed  Google Scholar 

  • ———, J. L. Thorne, N. Wikström & K. Bremer. 2004. Molecular evidence on plant divergence times. American Journal of Botany 91(10): 1656–1665.

    CAS  Google Scholar 

  • Saporta, G. de. 1862. Études sur la végétation du sud-est de la France à l’époque Tertiaire. Annales des Sciences Naturelles 4e Série Botanique 17: 191–311 + 14 pl.

  • ———. 1873. Études sur la végétation du sud-est de la France à l’époque Tertiaire. Supplément 1, Révision de la flore des Gypses d’Aix. Troisième fascicule. Description des espéces Dicotylédones. Annales des Sciences Naturelles 5e Série Botanique 18: 23–146 + 12 pl.

  • ———. 1889. Dernières adjonctions a la Flore fossile d’Aix-en-Provence. Description des espèces-deuxième partie. Annales des Sciences Naturelles 7e Série Botanique 10: 1–192 + 20 pl.

  • Savolainen, V., M. W. Chase, S. B. Hoot, M. C. Morton, D. E. Soltis, C. Bayer, M. F. Fay, A. Y. De Bruijn, S. Sullivan & Y. Qiu. 2000. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Systematic Biology 49(2): 306–362.

    CAS  PubMed  Google Scholar 

  • Schönenberger, J. & E. M. Friis. 2001. Fossil flowers of ericalean affinity from the Late Cretaceous of Southern Sweden. American Journal of Botany 88(3): 467–480.

    PubMed  Google Scholar 

  • ———, A. A. Anderberg & K. J. Sytsma. 2005. Molecular phylogenetics and patterns of floral evolution in the Ericales. International Journal of Plant Sciences 166(2): 265–288.

    Google Scholar 

  • Schweigert, G. 1992. Zur Altersstellung der Floren von Riggau und Friedersreuth (Hessenreuther Forst, Oberpfalz) mit Beschreibung von Styrax hradekense (Kvacek & Buezek) n. comb [The age of the Riggau and Friedersreuth floras, Hessenreuth Forest, Upper Palatinate, with a description of Styrax hradekense, n. comb]. Geologische Blaetter fuer Nordost-Bayern und Angrenzende Gebiete 42(3-4): 229–244.

    Google Scholar 

  • Scott, R. A. & E. S. Barghoorn. 1957. Phytocrene microcarpa—a new species of Icacinaceae based on Cretaceous fruits from Kreischerville, New York. The Palaeobotanist 6(1): 25–28.

    Google Scholar 

  • Scott, L., A. Cadman & I. McMillan. 2006. Early history of Cainozoic Asteraceae along the Southern African west coast. Review of Palaeobotany and Palynology 142(1–2): 47–52.

    Google Scholar 

  • Sole de Porta, N. 1960. Observaciones palinológicas sobre el plioceno de Cartagena (Colombia). Boletin de Geología (Bucaramanga) 4: 45–50.

    Google Scholar 

  • Soltis, D. E., P. E. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, V. Savolainen, W. H. Hahn, S. B. Hoot, M. F. Fay, M. Axtell, S. M. Swensen, L. M. Prince, W. J. Kress, K. C. Nixon & J. S. Farris. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL and atpB sequences. Botanical Journal of the Linnean Society 133(4): 381–461.

    Google Scholar 

  • ———, M. A. Gitzendanner & P. E. Soltis. 2007. A 567-taxon data set for angiosperms: The challenges posed by Bayesian analyses of large data sets. International Journal of Plant Sciences 168(2): 137–157.

    CAS  Google Scholar 

  • Stockey, R. A., B. A. Lepage & K. Pigg. 1998. Permineralized fruits of Diplopanax (Cornaceae, Mastixioideae) from the Middle Eocene Princeton Chert of British Columbia. Review of Palaeobotany and Palynology 103(3–4): 223–234.

    Google Scholar 

  • Szafer, W. 1961. Miocene flora from Stare Gliwice in Upper Silesia. Instytut Geologiczny Prace, XXXIII. Wydawnictwa Geologiczne, Warsaw.

    Google Scholar 

  • Takahashi, M., P. R. Crane & H. Ando. 1999. Fossil flowers and associated plant fossils from the Kamikitaba locality (Ashizawa Formation, Futaba Group, Lower Coniacian, Upper Cretaceous) of Northeast Japan. Journal of Plant Research 112(2): 187–206.

    Google Scholar 

  • ———, ——— & S. R. Manchester. 2002. Hironoia fusiformis gen. et sp. nov.. A cornalean fruit from the Kamikitaba locality (Upper Cretaceous, Lower Coniacian) in Northeastern Japan. Journal of Plant Research 115(6): 463–473.

    PubMed  Google Scholar 

  • Takhtajan, A. 1997. Diversity and classification of flowering plants. Columbia University Press, New York, NY, USA.

    Google Scholar 

  • Tanai, T. 1990. Euphorbiaceae and Icacinaceae from the Paleogene of Hokkaido. Japan. Bulletin of the National Science Museum of Tokyo. Series C: Geology and Paleontology 16(3): 91–118.

    Google Scholar 

  • Thayn, G. F., W. D. Tidwell & W. L. Stokes. 1985. Flora of the lower cretaceous cedar mountain formation of Utah and Colorado. Part III: Icacinoxylon pittiense n. sp. American Journal of Botany 72(2): 175–180.

    Google Scholar 

  • Tiffney, B. H. 1999. Fossil fruit and seed flora from the Early Eocene Fisher/Sullivan Site. Pages 139–159 in R. E. Weems & G. J. Grimsley (eds.), Early Eocene vertebrates and plants from the Fisher/Sullivan Site (Nanjemoy Formation) Stafford County, Virginia. Virginia Division of Mineral Resources Publication.

  • ——— & K. K. Haggard. 1996. Fruits of Mastixioideae (Cornaceae) from the Paleogene of western North America. Review of Palaeobotany and Palynology 92(1–2): 29–54.

    Google Scholar 

  • Tralau, H. 1964. The genus Trapella Olivier in the Tertiary of Europe. Botaniska Notiser 117(2): 119–123.

    Google Scholar 

  • ———. 1965. Die Gattung Trapella im zentraleuropaeischen Tertiaer. Geologisches Jahrbuch 82: 771–775.

    Google Scholar 

  • Trivedi, B. S. & S. K. Chaturvedi. 1972. Voyrioseminites magnus gen et sp. nov. a fossil seed from Tertiary coal of Malaya. Geophytology 1(2): 161–164 + 1pl.

    Google Scholar 

  • Vassiljev, I. V. 1976. Some representatives of Anacardiaceae and Apocynaceae in the Palaeogene floras of western Kazakhstan, U.S.S.R. The Palaeobotanist 25: 543–548.

    Google Scholar 

  • Vaudois-Miéja, N. 1983. Extension paléogéographique en Europe de l’actuel genre asiatique Rehderodendron Hu (Styracacées). Comptes-Rendus des Seances de l’Academie des Sciences, Série 2: Mecanique-Physique, Chimie, Sciences de l’Univers, Sciences de la Terre 296(1): 125–130.

  • Wagenitz, G. 1992. The Asteridae: Evolution of a concept and its present status. Annals of the Missouri Botanical Garden 79(2): 209–217.

    Google Scholar 

  • Welch, J. J. & L. Bromham. 2005. Molecular dating when dates vary. Trends in Ecology and Evolution 20(6): 320–327.

    PubMed  Google Scholar 

  • Wheeler, E., M. Lee & L. C. Matten. 1987. Dicotyledonous woods from the Upper Cretaceous of southern Illinois. Botanical Journal of the Linnean Society 95(2): 77–100.

    Google Scholar 

  • Wikström, N., V. Savolainen & M. W. Chase. 2001. Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London series B 268(1482): 2211–2220.

    PubMed  Google Scholar 

  • Wilde, V. 1989. Untersuchungen zur Systematik der Blattreste aus dem Mitteleozän der Grube Messel bei Darmstadt (Hessen, Bundesrepublik Deutschland). Courier Forschungsinstitut Senckenberg 115: 1–213.

    Google Scholar 

  • Wolfe, J. A. 1964. The Miocene floras from Fingerrock Wash Southwestern Nevada. U. S. Geological Survey Professional Paper 454–N: N1–N36 + 12 pl.

  • ——— & H. E. Schorn. 1989. Paleoecologic, paleoclimatic, and evolutionary significance of the Oligocene Creede Flora, Colorado. Paleobiology 15(2): 180–198.

    Google Scholar 

  • ——— & ———. 1990. Taxonomic revision of the Spermatopsida of the Oligocene Creede Flora, southern Colorado. U. S. Geological Survey Bulletin 1923: 1-40.

    Google Scholar 

  • Xiang, Q.-Y., M. L. Moody, D. E. Soltis, C. Fan & P. S. Soltis. 2002. Relationships within Cornales and circumscription of Cornaceae—matK and rbcL sequence data and effects of outgroups and long branches. Molecular Phylogenetics and Evolution 24(1): 35–57.

    CAS  PubMed  Google Scholar 

  • Zamaloa, M. C. 2000. Palinoflora y ambiente en el Terciario del nordeste de Tierra del Fuego, Argentina. Revista del Museo Argentino de Ciencias Naturales 2(1): 43–51.

    Google Scholar 

  • Zavada, M. S. & S. E. de Villiers. 2000. Pollen of the Asteraceae from the Paleocene-Eocene of South Africa. Grana 39(1): 39–45.

    Google Scholar 

  • Zhang, W.-H., Z.-D. Chen, J.-H. Li, H.-B. Chen & Y.-C. Tang. 2003. Phylogeny of Dipsacales s. l. based on chloroplast trnL-F and ndhF sequences. Molecular Phylogenetics and Evolution 26(2): 176–189.

    PubMed  Google Scholar 

  • Zuckerkandl, E. & L. Pauling. 1962. Molecular disease, evolution, and genetic heterogeneity. Pp 189–225. In: M. Kasha & B. Pullman (eds). Horizons in biochemistry. Academic Press, New York, USA.

    Google Scholar 

  • ——— & ———. 1965. Evolutionary divergence and convergence in proteins Pages 97–166 in Bryson, V. and H. J. Vogel (eds.), Evolving genes and proteins. Academic Press, New York, USA.

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the following colleagues for helping locate type specimens and for providing access to the collections in their institutions: Magali Volpes (AIX, Aix-en-Provence), Dr. Dario De Franceschi, Dr. Jean Dejax and Mme. Christiane Gallet (MNHN, Paris), Dr. Paul Kenrick, Dr. Peta Hayes and Mr. Cedric Shutte (NHM, London), and Dr. Dena Smith and Dr. Jonathan Marcot (CU Museum, Boulder CO). Special thanks to the librarians at the Hortorium, Mann, Kroch and Engineering Libraries, the Library Annex and Interlibrary Loan for providing prompt access to obscure materials that would have been otherwise impossible to obtain. The author would also like to thank Dr. William Crepet for comments and suggestions that greatly improved this paper, and Dr. Steven Manchester for this thorough review of the manuscript. This research was supported by grants from the following sources: Sigma Xi Cornell Chapter, the Mario Einaudi Center for International Studies, Grants-in-Aid of Research (Sigma Xi), The Paleontological Society, the Mid-America Paleontology Society (MAPS), the American Society of Plant Taxonomists (ASPT), the Botanical Society of America (BSA), the Harold E. Moore, Jr Memorial and Endowment Funds, the Department of Plant Biology, Cornell University and NSF grant DEB 01-08369.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Martínez-Millán.

Appendices

Appendix A

Circumscription of Asterids

The concept and circumscription of asterids has changed dramatically from the days of classification systems based on morphology only. Table 16 shows three widely known systems and their concept of asterids and other groups that are now considered asterids.

Table 16 Circumscription of Asterids Under Three Classification Systems. Placement by Cronquist and Takhtajan of Families that Today are Considered To Be Asterids are Also Given

Appendix B

Phylogenetic Analysis of Silvianthemum Friis, 1990

Although the fossil taxon Silvianthemum suecicum Friis, 1990 was included in a phylogenetic analysis (Backlund, 1996 using the Backlund & Donoghue, 1996 matrix of morphological characters), it is appropriate to revisit this taxon as the aforementioned analysis is not compatible with more recent and robust hypotheses of phylogenetic relationships. For this new analysis, characters 32–60—representing floral morphology, androecium, gynoecium and fruit characters—of the Backlund and Donoghue (1996) matrix of morphological characters were used. Silvianthemum was coded based on its original description (Friis, 1990). The resulting matrix has 59 taxa, including the fossil taxon and 29 characters (Table 17):

Table 17 Characters 32 to 60 of the Backlund and Donoghue (1996) Matrix of Morphological Characters with Silvianthemum suecicum Friis, 1990
  1. 32.

    Sexual distribution: bisexual = 0; dioecious = 1; gynodioecious = 2; trioecious = 3.

  2. 33.

    Perianth position: hypogynous = 0; semi-epigynous = 1; epigynous = 2.

  3. 34.

    Flower/corolla orientation: one petal adaxial = 0; one petal abaxial = 1.

  4. 35.

    Sepal size: absent or not visible = 0; very reduced, inrolled plumes or minute teeth = 1; well developed prominent = 2.

  5. 36.

    Sepals, number of: 2 = 0; 3 = 1; 4 = 2; 5 = 3; 6 or more, indefinite = 4.

  6. 37.

    Sepal vascularization: 1 trace = 0; 3 traces = 1; 4 traces = 2; 5 traces = 3.

  7. 38.

    Sepal modification for fruit dispersal: none = 0; developing into a plumose seed/ fruit = 1; developing to seeds/fruits with awns/bristles = 2; enlarged and leaflike aiming for wind dispersal = 3.

  8. 39.

    Petal and sepal folding-pattern in buds: valvate = 0; imbricate = 1.

  9. 40.

    Petal fusion: fused = 0; free = 1.

  10. 41.

    Petals, number of: three petals/lobes = 0; four petals/lobes = 1; five petals/lobes = 2; six or more petals/lobes = 3; unnamed state = 4 [sic].

  11. 42.

    Corolla tube: petals weakly connate or no tube = 0; tube rotate/small but distinct = 1; tube well developed/long = 2.

  12. 43.

    Corolla symmetry: actinomorphic = 0; weakly zygomorphic = 1; strongly zygomorphic/bilabiate = 2.

  13. 44.

    Corolla nectary type: absent = 0; nectar disk = 1; multicellular hairs = 2; unicellular hairs = 3.

  14. 45.

    Corolla nectary number: 1, or fewer than number of lobes = 0; 1–5, or equal to number of lobes = 1.

  15. 46.

    Corolla vascularization: lacking lateral connections = 0; with lateral connections = 1.

  16. 47.

    Stamen number: 1 = 1; 2 = 2; 3 = 3; 4 = 4; 5 = 5; 6-more, indefinite = 6.

  17. 48.

    Stamen relative length: equal in length = 0; prominently unequal in length = 1; didynamous = 2.

  18. 49.

    Staminal filament indumentum: glabrous = 0; hairy = 1; unnamed state = 2.

  19. 50.

    Filament attachment: free from corolla = 0; weakly fused to corolla = 1; prominently fused to corolla = 2.

  20. 51.

    Staminal modifications: all stamens fertile = 0; sterile staminodia present = 1.

  21. 52.

    Anther attachment: dorsifixed = 0; basifixed = 1; sagittate = 2.

  22. 53.

    Anther orientation at dehiscence: extrorse = 0; introrse = 1.

  23. 54.

    Sporangium number in thecae: 1 = 0; 2 = 1.

  24. 55.

    Carpels, number: 1 = 1; 2 = 2; 3 = 3; 4 = 4; 5 = 5.

  25. 56.

    Carpel abortion: all fertile = 0; one aborted = 1; two adjacent aborted = 2; two adjacent aborted and ovule displaced = 3; two opposite aborted = 4.

  26. 57.

    Sterile loci: none = 0; present but much reduced and visible only as minor openings = 1; normal/prominent in cross sectioning of ovary = 2.

  27. 58.

    Carpel vascularization: free adaxial and abaxial = 0; adaxial bundles only = 1; only free abaxial, adaxial not recessed = 2.

  28. 59.

    Stigma shape: entire and slender = 0; capitate = 1; bilobate = 2; trilobate = 3; pentalobate = 4.

  29. 60.

    Fruit type: capsule loculicidal = 0; capsule septicidal = 1; berry = 2; drupe = 3; cypsela, with persistent remains of calyx = 4; cypsela, lacking remains of calyx = 5; schizocarp = 6.

The analysis of Bremer et al. (2002) showed that the Escalloniaceae is a polyphyletic group and that part of it, namely Quintinia is more closely related to the Dipsacales than to the rest of the family. It also showed that the Columelliaceae and the Bruniaceae do not belong with the Dipsacales and that Polyosma and Tribeles do not belong with the Apiales. These results differ enough from Backlund and Donoghue (1996) that a reevaluation of the position of Silvianthemum is justified.

In this work, the 59 extant taxa used by Backlund and Donoghue (1996) were rearranged in clades following the results of Bremer et al. (2002), Donoghue et al. (2003) and Zhang et al. (2003). The backbone tree and its group membership matrix were constructed in Winclada version 1.00.08 (Nixon, 2002). In order to allow Silvianthemum to “float” free among all possible positions in the cladograms, all its cells were changed to “?”. Similarly, those taxa not included in the Bremer et al. (2002), Donoghue et al. (2003) or Zhang et al. (2003) works—Zabelia, Knautia, Succisa, Belonanthus, Phyllactis and Stangea—were allowed to “float” free inside the Dipsacales clade by changing their scores to “?” in all characters that defined relationships within that clade. All characters were assigned a weight of 50.

The group membership matrix and the matrix of morphological characters matrix were combined in Winclada. A total of ten heuristic searches were run in NONA version 2.0 (Goloboff, 1999) where each run consisted on 1,000 replications of SPR searches on randomly generated initial wagner trees, holding up to ten trees per replication with an additional TBR on the resulting trees (>h10001; rs0; h/10; mult*1000; max*). The resulting trees were combined in Winclada where suboptimal and duplicate trees were eliminated and a strict consensus was calculated.

The analysis yielded 312 trees whose strict consensus was rerooted to match the basal polytomy of the Campanuliid clade showed in Bremer et al. (2002). In this strict consensus (Fig. 16), Silvianthemum and Quintinia are sister groups with dorsifixed anther attachment as synapomorphy (ch 52). The Dipsacales is the sister group of this clade.

Fig. 16
figure 16

Strict consensus of 312 trees (L = 204, CI = 32, RI = 68 each) rerooted to match the basal polytomy of the Campanuliid clade found by Bremer et al. (2002). The consensus shows the position of the fossil Silvianthemum as sister to Quintinia with dorsifixed anther attachment as synapomorphy (ch 52) and the Dipsacales (black circle) as their sister group

Appendix C

Phylogenetic Analysis of Scandianthus Friis and Skarby, 1982

In order to test the assignment of the fossil genus Scandianthus to the Vahliaceae in a phylogenetic context, the characters used by the authors in their original description of the fossil taxon were used to create a data matrix. In Friis and Skarby’s (1982) original table, Scandianthus was compared to 28 families then assigned to the Saxifragales. In the table most columns represent character states (absent/present scoring) and not independent characters, here, this situation was addressed by creating multistate unordered characters. The resulting data matrix has 12 characters (Table 18):

Table 18 Data Matrix of Morphological Characters Derived From the Table Presented By Friis and Skarby (1982)
  1. 1.

    Flower sex: bisexual = 0; unisexual = 1.

  2. 2.

    Flower part position: epigynous = 0; perigynous = 1; hypogynous = 2.

  3. 3.

    Perianth part connation: floral parts free = 0; floral parts fused = 1.

  4. 4.

    Androecium number: diplostemonous = 0; obdiplostemonous = 1; haplostemonous = 2; numerous stamens = 3.

  5. 5.

    Carpel number: 2 = 0; 3–5(−15) = 1.

  6. 6.

    Apo/Syncarpic gynoecium: apocarpous = 0; syncarpous = 1.

  7. 7.

    Locule number: 1 = 0; 2–5(−15) = 1.

  8. 8.

    Style number in syncarpous gynoecium: 1 = 0; 2 = 1.

  9. 9.

    Capsule as fruit: capsule = 0; other than capsule (berry, drupe or nut) = 1.

  10. 10.

    Placentae pendant: absent = 0; present = 1.

  11. 11.

    Ovule relative number: few = 0; many = 1.

  12. 12.

    Nectary disc: absent = 0; present = 1.

The families used by Friis and Skarby (1982) were then thought to form the saxifragalean complex. The phylogenetic analyses by Soltis et al. (2000) dismembered this “saxifragalean complex” by showing that these families are distantly related. The works of Soltis et al. (2000), Bremer et al. (2002) and APG (2003) were used here to create a fixed backbone compatible with these newer hypotheses of relationships. This backbone tree was constructed in Winclada version 1.00.08 (Nixon, 2002) and a group membership matrix was derived from it. In this matrix (29 taxa, 20 characters) all character states for Scandianthus were changed to “?” and all characters were assigned a weight of 20. The group membership matrix and the morphological characters matrix were combined in Winclada and ten heuristic searches were run in NONA version 2.0 (Goloboff, 1999). Each run consisted on 1,000 replications of SPR searches on randomly generated initial wagner trees, holding up to ten trees per replication with an additional TBR on the resulting trees (>h10001; rs0; h/10; mult*1000; max*). The resulting trees were combined in Winclada where suboptimal and duplicate trees were eliminated and a strict consensus was calculated.

The searches resulted in 32 trees whose strict consensus was rerooted in the node between the Saxifragales and the Rosid-Asterid clade (Fig. 17). The strict consensus shows Scandianthus as sister to Vahliaceae based on both having one locule (ch 7) and pendant placentae (ch 10).

Fig. 17
figure 17

Strict consensus of 32 trees (L = 62, CI = 22, RI = 28 each) rerooted in the node between the Saxifragales and the Rosid-Asterid clade. Scandianthus was resolved as sister to Vahliaceae based the synapomorphies one locule (ch 7) and pendant placentae (ch 10)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Millán, M. Fossil Record and Age of the Asteridae. Bot. Rev. 76, 83–135 (2010). https://doi.org/10.1007/s12229-010-9040-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-010-9040-1

Keywords

Navigation