Skip to main content
Log in

Dyeing and functional finishing of cotton fabric using Henna extract and TiO2 Nano-sol

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A new approach for dyeing and functional finishing for cotton fabric using Henna extract and TiO2 nano-sol was investigated. In this study, 3-chloro-2-hydroxy propyl trimethylammonium chloride was used to substitute metallic mordants (heavy-metal salts) in pre-treating cotton fabric. This eventually will prevent heavy metal pollution as well as obtain dyeing without addition of salt. TiO2 nano-sol was prepared by sol-gel method using different amounts of tetraisopropyl orthotitanate (TTIP) and applied on cationized cotton fabrics using the same finishing formulation and treatment sequence. Treated fabrics were then dyed with Henna extract at different dyeing temperatures (60 ℃, 80 ℃, and 90 ℃). TiO2 nanoparticles were characterized by transmission electron microscopy (TEM). The chemical and morphological structures of the dyed fabrics were characterized by attenuated total reflection-Fourier transform infrared (ATR-FTIR), scanning electron microscopy (SEM), and X-ray diffractometry (XRD). Color strength, fastness properties (washing, rubbing, and light), UV-blocking, antibacterial activity, and tensile strength were investigated. Samples treated with TiO2 and dyed with Henna extract exhibited outstanding enhancement in both the UV protection and antibacterial efficacy with minimal impact on color depth and tensile strength. Enhancement or decrement in the UV protection, antibacterial activity and dyeing properties are governed by the amount of TTIP and the dyeing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lichtfouse, J. Schwarzbauer, and D. Robert, “Green Materials for Energy, Products and Depollution”, Vol. 3, pp.229–281, Springer, Dijon, 2013.

    Article  Google Scholar 

  2. A. K. Samanta and A. Konar, Natural Dyes, 3, 29 (2011).

    Google Scholar 

  3. N. A. Ibrahim, A. R. El-Gamal, M. Gouda, and F. Mahrous, Carbohydr. Polym., 82, 1205 (2010).

    Article  CAS  Google Scholar 

  4. S. Ali, T. Hussain, and R. Nawaz, J. Clean Prod., 17, 61 (2009).

    Article  CAS  Google Scholar 

  5. J. Iqbal, I. A. Bhatti, and S. Adeel, Indian J. Fibre Text. Res., 33, 157 (2008).

    CAS  Google Scholar 

  6. F. Rehman, A. Shahid, Q. Summia, B. A. Ijaz, S. Muhammad, and Z. Mohammad, Radait. Phys. Chem., 81, 1752 (2012).

    Article  CAS  Google Scholar 

  7. M. S. Khalil-Abad, M. E. Yazdanshenas, and M. R. Nateghi, Cellulose., 16, 1147 (2009).

    Article  Google Scholar 

  8. A. Farouk, S. Sharaf, and M. M. Abd El-Hady, Int. J. Biol. Macromol., 61, 230 (2013).

    Article  CAS  Google Scholar 

  9. O. K. Alebeid and T. Zhao, Text. Res. J., 85, 449 (2015).

    Article  CAS  Google Scholar 

  10. N. Ibrahim, R. Refaie, and A. Ahmed, J. Ind. Text., 40, 65 (2010).

    Article  CAS  Google Scholar 

  11. A. C. Patino, C. Rodriguez, C. Caballero, G. Navarro, A. Canal, and J. M. Canal, Cellulose, 18, 1073 (2011).

    Article  CAS  Google Scholar 

  12. M. M. Montazer, R. M. A. Malek, and A. Rahimi, Fiber. Polym., 8, 608 (2007).

    Article  CAS  Google Scholar 

  13. D. Fakin, N. Veronovski, A. Ojstršek, and M. Božic, Carbohydr. Polym., 88, 992 (2012).

    Article  CAS  Google Scholar 

  14. H. Zhang, L. Zhu, and R. Sun, J. Eng. Fiber Fab., 9, 67 (2014).

    CAS  Google Scholar 

  15. E. Pakdel and W. A. Daoud, J. Colloid Interface Sci., 401, 1 (2013).

    Article  CAS  Google Scholar 

  16. J. H. Cai, J. W. Huang, H. C. Yu, and L. N. Ji, Int. J. Photoenergy, 2012, 1 (2012).

    Article  Google Scholar 

  17. R. Vijayalakshmi and V. Rajendran, Arch. Appl. Sci. Res., 4, 1183 (2012).

    CAS  Google Scholar 

  18. N. A. Ibrahim, E. M. R. El-Zairy, W. A. Abdalla, and H. M. Khalil, Carbohydr. Polym., 92, 1386 (2013).

    Article  CAS  Google Scholar 

  19. U. Akpan and B. Hameed, J. Hazard. Mater., 170, 520 (2009).

    Article  CAS  Google Scholar 

  20. M. N. Micheal, F. M. Tera, and S. F. Ibrahim, J. Appl. Polym. Sci., 89, 1897 (2002).

    Article  Google Scholar 

  21. S. S. Ugur, M. Sariišik, and A. H. Aktas, Fiber. Polym., 12, 190 (2011).

    Article  CAS  Google Scholar 

  22. M. Akgun, B. Becerir, and H. Alpay, Acta Facultatis Medicae Naissensis, 27, 301 (2010).

    Google Scholar 

  23. N. Abidi, E. Hequet, S. Tarimala, and L. L. Dai, J. Appl. Polym. Sci., 104, 111 (2007).

    Article  CAS  Google Scholar 

  24. M. Kannahi and K. Vinotha, Int. J. Curr. Microbiol. Appl. Sci., 2, 342 (2013).

    Google Scholar 

  25. P. Arun, K. Purushotham, and V. Kumari, Int. J. Pharm. Technol. Res., 2, 1178 (2010).

    CAS  Google Scholar 

  26. W. Jiang, K. Yang, R. W. Vachet, and B. Xing, Langmuir, 26, 18071 (2010).

    Article  CAS  Google Scholar 

  27. V. Sundaram, I. K. R. Krishna, and S. Sreenivasan, “Handbook of Methods of Tests for Cotton Fibers, Yarns and Fabrics”, p.61, CIRCOT (ICAR), Mumbai, 2004.

    Google Scholar 

  28. S. Hashemikia and M. Montazer, Appl. Catal. A-Gen., 414, 200 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alebeid, O.K., Zhao, T. & Seedahmed, A.I. Dyeing and functional finishing of cotton fabric using Henna extract and TiO2 Nano-sol. Fibers Polym 16, 1303–1311 (2015). https://doi.org/10.1007/s12221-015-1303-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-1303-3

Keywords

Navigation