Skip to main content

Advertisement

Log in

Weighted Norm Inequalities on Graphs

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let (Γ,μ) be an infinite graph endowed with a reversible Markov kernel p and let P be the corresponding operator. We also consider the associated discrete gradient ∇. We assume that μ is doubling, a uniform lower bound for p(x,y) when p(x,y)>0, and gaussian upper estimates for the iterates of p. Under these conditions (and in some cases assuming further some Poincaré inequality) we study the comparability of (IP)1/2 f and ∇f in Lebesgue spaces with Muckenhoupt weights. Also, we establish weighted norm inequalities for a Littlewood–Paley–Stein square function, its formal adjoint, and commutators of the Riesz transform with bounded mean oscillation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auscher, P., Coulhon, T.: Riesz transforms on manifolds and Poincaré inequalities. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 4(5), 1–25 (2005)

    MathSciNet  Google Scholar 

  2. Auscher, P., Martell, J.M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part III: Harmonic analysis of elliptic operators. J. Funct. Anal. 241(2), 703–746 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auscher, P., Martell, J.M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights. Adv. Math. 212(1), 225–276 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auscher, P., Martell, J.M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part IV: Riesz transforms on manifolds and weights. Math. Z. 260(3), 527–539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auscher, P., Coulhon, T., Duong, X.T., Hofmann, S.: Riesz transforms on manifolds and heat kernel regularity. Ann. Sci. Ecole Norm. Super. 37(6), 911–957 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Badr, N., Russ, E.: Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs. Publ. Mat. 53(2), 273–328 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Bernicot, F., Zhao, J.: Abstract Hardy spaces. J. Funct. Anal. 255(7), 1761–1796 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coifman, R.R., Weiss, G.: Analyse Harmonique Non-commutative sur Certains Espaces Homogènes. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)

    MATH  Google Scholar 

  9. Coulhon, T., Grigor’yan, A.: Random walks on graphs with regular volume growth. Geom. Funct. Anal. 8, 656–701 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delmotte, T.: Parabolic Harnack inequality. Rev. Mat. Iberoam. 15(1), 181–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Franchi, B., Pérez, C., Wheeden, R.L.: Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type. J. Funct. Anal. 153, 108–146 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hajlasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145, 688 (2000)

    MathSciNet  Google Scholar 

  13. Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition. Ann. Math. 167(2), 575–599 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martell, J.M.: Desigualdades con pesos en el Análisis de Fourier: de los espacios de tipo homogéneo a las medidas no doblantes. Ph.D. Thesis, Universidad Autónoma de Madrid (2001)

  15. Russ, E.: Riesz transforms on graphs for 1≤p≤2. Math. Scand. 87, 133–160 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Russ, E.: H 1L 1 boundedness of Riesz transforms on Riemannian manifolds and on graphs. Potential Anal. 14, 301–330 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Strömberg, J.O., Torchinsky, A.: Weighted Hardy Spaces. Lecture Notes in Mathematics, vol. 1381. Springer, Berlin (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Martell.

Additional information

Communicated by Loukas Grafakos.

The second author was supported by MICINN Grant MTM2010-16518, and by CSIC PIE 200850I015.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badr, N., Martell, J.M. Weighted Norm Inequalities on Graphs. J Geom Anal 22, 1173–1210 (2012). https://doi.org/10.1007/s12220-011-9233-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-011-9233-9

Keywords

Mathematics Subject Classification (2000)

Navigation