Skip to main content
Log in

Dynamics of endogenous Hsp70 synthesis in the brain of olfactory bulbectomized mice

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

An Erratum to this article was published on 06 November 2012

Abstract

Numerous epidemiological studies have established acute brain injury as one of the major risk factors for the Alzheimer's disease (AD). However, the lack of animal models of AD-like degeneration triggered by a defined injury hampered the development of adequate therapies. Here we report that the surgical damage of the olfactory bulbs triggers the development of several pathologies, including amyloid-β accumulation and strong decrease of neuron density in the cortex and hippocampus as well as significant disturbance of spatial memory. Characteristically, these harmful consequences of the olfactory bulbectomy (OBX) have a peculiar dynamics in time with maximal manifestation in periods of 1–1.5 months and 8 months after the surgery and, hence, exhibit biphasic pattern with almost complete recovery period taking place at 5–6 months after the operation. The quantitative determination of endogenous inducible form of Hsp70 in different brain areas of OBX mice demonstrated characteristic fluctuations of Hsp70 levels depending on the time after the operation and age of mice. Interestingly, maximal induction of Hsp70 synthesis in the hippocampus exhibits clear-cut coincidence with the recovery period in OBX animals. The observed correlation enables to suggest curing effect of Hsp70 synthesis at an earlier period of pathology development and establishes it as a possible therapeutic agent for secondary grave consequences of brain injury, such as AD-like degeneration, for which neuroprotective therapy is urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bobkova NV, Nesterova IV, Medvinskaya NI, Aleksandrova IY, Samokhin AN, Gershovich YG, Gershovich PM, Yashin VA (2005) Possible role of olfactory system in Alzheimer’s disease genesis. In: Hanin L, Fisher A, and Monduzzi M (eds) Alzheimer’s and Parkinson’s disease—AD/PD pp 91–95

  • Bobkova N, Vorobyov V, Medvinskaya N, Aleksandrova I, Nesterova I (2008) Interhemispheric EEG differences in olfactory bulbectomized rats with different cognitive abilities and brain beta-amyloid levels. Brain Res 1232:185–194

    Article  PubMed  CAS  Google Scholar 

  • Calderwood SK (2010) Protein quality control and heat shock gene expression in the nervous system. In: Asea A, Calderwood SK (eds) Heat shock proteins and the brain: implications for neurodegenerative diseases and neuroprotection. Springer

  • Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging—a mini-review. Gerontology 55:550–558

    Article  PubMed  CAS  Google Scholar 

  • Chételat G, Landeau B, Eustache F, Mézenge F, Viader F, de la Sayette V, Desgranges B, Baron JC (2005) Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. NeuroImage 27:934–946

    Article  PubMed  Google Scholar 

  • Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518

    Article  PubMed  CAS  Google Scholar 

  • Doeppner TR, Nagel F, Dietz GP, Weise J, Tönges L, Schwarting S, Bähr M (2009) TAT-Hsp70-mediated neuroprotection and increased survival of neuronal precursor cells after focal cerebral ischemia in mice. J Cereb Blood Flow Met 29:1187–1196

    Article  CAS  Google Scholar 

  • Doty RL (2009) The olfactory system and its disorders. Semin Neurol 29:74–81

    Article  PubMed  Google Scholar 

  • Evans CG, Wisén S, Gestwicki JE (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1–42) aggregation in vitro. J Biol Chem 281:33182–33191

    Article  PubMed  CAS  Google Scholar 

  • Franklin TB, Krueger-Naug AM, Clarke DB, Arrigo AP, Currie RW (2005) The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperthermia 21:379–392

    Article  PubMed  CAS  Google Scholar 

  • Gifondorwa DJ, Robinson MB, Hayes CD, Taylor AR, Prevette DM, Oppenheim RW, Caress J, Milligan CE (2007) Exogenous delivery of heat shock protein70 increases lifespan in a mouse model of amyotrophic lateral sclerosis. J Neurosci 27:13173–13180

    Article  PubMed  CAS  Google Scholar 

  • Gong J, Zhu B, Murshid A, Adachi H, Song B, Lee A, Liu C, Calderwood SK (2009) T cell activation by heat shock protein 70 vaccine requires TLR signaling and scavenger receptor expressed by endothelial cells-1. J Immunol 183:3092–3098

    Article  PubMed  CAS  Google Scholar 

  • Hemphill JC, Andrews P, De Georgia M (2011) Medscape. Multimodal monitoring and neurocritical care bioinformatics. Nat Rev Neurol 7:451–460

    Article  PubMed  Google Scholar 

  • Holland D, Brewer JB, Hagler DJ, Fennema-Notestine C, Dale AM, Alzheimer’s disease neuroimaging initiative (2009) Subregional neuroanatomical change as a biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA 106:20954–20959

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T, Murao N, Namba T, Takehara M, Adachi H, Katsuno M, Sobue G, Matsushima T, Suzuki T, Mizushima T (2011) Suppression of Alzheimer’s disease-related phenotypes by expression of heat shock protein 70 in mice. J Neurosci 31:5225–5234

    Article  PubMed  CAS  Google Scholar 

  • Hozumi S, Nakagawasai O, Tan-No K, Niijima F, Yamadera F, Murata A, Arai Y, Yasuhara H, Tadano T (2003) Characteristics of changes in cholinergic function and impairment of learning and memory-related behavior induced by olfactory bulbectomy. Behav Brain Res 138:9–15

    Article  PubMed  CAS  Google Scholar 

  • Ikonomovic MD, Uryu K, Abrahamson EE, Ciallella JR, Trojanowski JQ, Lee VM, Clark RS, Marion DW, Wisniewski SR, DeKosky ST (2004) Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol 190:192–203

    Article  PubMed  CAS  Google Scholar 

  • Johnson JD, Fleshner M (2006) Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. J Leukoc Biol 79:425–434

    Article  PubMed  CAS  Google Scholar 

  • Johnson VE, Stewart W, Douglas HS (2010) Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat Rev Neurosci 11:361–370

    PubMed  CAS  Google Scholar 

  • Kaminina AV, Volpina OM, Medvinskaya NI, Aleksandrova IJ, Volkova TD, Koroev DO, Samokhin AN, Nesterova IV, Shelukhina IV, Kryukova EV, Tsetlin VI, Ivanov VT, Bobkova NV (2010) Vaccination with peptide 173–193 of acetylcholine receptor alpha7-subunit prevents memory loss in olfactory bulbectomized mice. J Alzheimer Dis 21:249–261

    Google Scholar 

  • Kirkegaard T, Roth AG, Petersen NH, Mahalka AK, Olsen OD, Moilanen I, Zylicz A, Knudsen J, Sandhoff K, Arenz C, Kinnunen PK, Nylandsted J, Jäättelä M (2010) Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature 463:549–553

    Article  PubMed  CAS  Google Scholar 

  • Klapdor K, Van der Staay FJ (1996) The Morris water-escape task in mice: strain differences and effects of intra-maze contrast and brightness. Physiol Behav 60:1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Kustanova G, Murashev A, Karpov V, Margulis B, Guzhova IV, Prokhorenko IR, Grachev SV, Evgen’ev MB (2006) Exogenous heat shock protein 70 mediates sepsis manifestations and decreases the mortality rate in rats. Cell Stress Chaperones 11:276–286

    Article  PubMed  CAS  Google Scholar 

  • Magrane J, Querfurth HW (2010) Heat shock proteins: unfolded protein response chaperones and Alzheimer’s diseases.In: Asea AA, Brown IR (eds) Heat shock proteins and the brain: implications for neurodegenerative diseases and neuroprotection, Springer pp 25–50

  • Magrané J, Smith RC, Walsh K, Querfurth HW (2004) Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 24:1700–1706

    Article  PubMed  Google Scholar 

  • Margulis B, Kinev A, Guzhova I (2006) In: Radons J, Multhoff G (eds) Heat shock proteins in biology and medicine, Research Singpost pp 305–330

  • Merlin AB, Sherman MY (2005) Role of molecular chaperones in neurodegenerative disorders. Int J Hyperthermia 21:403–419

    Article  Google Scholar 

  • Moriguchi S, Han F, Nakagawasai O, Tadano T, Fukunaga K (2006) Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. J Neurochem 97:22–29

    Article  PubMed  CAS  Google Scholar 

  • Nakajima A, Yamakuni T, Haraguchi M, Omae N, Song SY, Kato C, Nakagawasai O, Tadano T, Yokosuka A, Mimaki Y, Sashida Y, Ohizumi Y (2007) Nobiletin, a citrus flavonoid that improves memory impairment, rescues bulbectomy-induced cholinergic neurodegeneration in mice. J Pharmacol Sci 105:122–126

    Article  PubMed  CAS  Google Scholar 

  • Nesterova IV, Gurevich EV, Nesterov VI, Otmakhova NA, Bobkova NV (1997) Bulbectomy-induced loss of raphe neurons is counteracted by antidepressant treatment. Prog Neuro-Psychopharm Biol Psychiatry 2:127–140

    Article  Google Scholar 

  • Nesterova IV, Bobkova NV, Medvinskaya NI, Samokhin AN, Aleksandrova IY (2008) Morphofunctional state of neurons in the temporal cortex and hippocampus in relation to the level of spatial memory in rats after ablation of the olfactory bulbs. Neurosc Behav Physiol 38:349–353

    Article  CAS  Google Scholar 

  • Reisberg B, Saeed MU (2004) In: Sadavoy, J. et al. (eds) Comprehensive textbook of geriatric psychiatry. Third Edition., Norton, New York. pp 449–509

  • Robinson MB, Tidwell JL, Gould T, Taylor AR, Newbern JM, Graves J, Tytell M, Milligan CE (2005) Extracellular heat shock protein 70: a critical component for motoneuron survival. J Neurosci 25:9735–9745

    Article  PubMed  CAS  Google Scholar 

  • Rozhkova E, Yurinskaya M, Zatsepina O, Garbuz D, Karpov V, Surkov S, Murashev A, Ostrov V, Margulis B, Evgen'ev M, Vinokurov M (2010) Exogenous mammalian extracellular HSP70 reduces endotoxin manifestations at the cellular and organism levels. Ann N Y Acad Sci 1197:94–107

    Article  PubMed  CAS  Google Scholar 

  • Seidberg NA, Clark RS, Zhang X, Lai Y, Chen M, Graham SH, Kochanek PM, Watkins SC, Marion DW (2003) Alterations in inducible 72-kDa heat shock protein and the chaperone cofactor BAG-1 in human brain after head injury. J Neurochem 84:514–521

    Article  PubMed  CAS  Google Scholar 

  • Sheng C, Brown IR (2007) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones 12(1):51–58

    Article  Google Scholar 

  • Skelin I, Sato H, Diksic M (2008) Olfactory bulbectomy reduces cerebral glucose utilization: 2-[14C] deoxyglucose autoradiographic study. Brain Res Bull 76:485–492

    Article  PubMed  CAS  Google Scholar 

  • Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29:627–647

    Article  PubMed  Google Scholar 

  • Struble RG, Dhanraj DN, Mei Y, Wilson M, Wang R, Ramkumar V (1998) Beta-amyloid precursor protein-like immunoreactivity is upregulated during olfactory nerve regeneration in adult rats. Brain Res 780:129–137

    Article  PubMed  CAS  Google Scholar 

  • Tidwell JL, Houenou LJ, Tytell M (2004) Administration of Hsp70 in vivo inhibits motor and sensory neuron degeneration. Cell Stress Chaperones 9:88–98

    PubMed  CAS  Google Scholar 

  • Toyn JH, Lin XA, Thompson MW, Guss V, Meredith JE Jr, Sankaranarayanan S, Barrezueta N, Corradi J, Majumdar A, Small DL, Hansard M, Lanthorn T, Westphal RS, Albright CF (2010) Viable mouse gene ablations that robustly alter brain Abeta levels are rare. BCM Neuroscience 11:143–151

    Google Scholar 

  • Van den Heuvel C, Thornton E, Vink R (2007) Traumatic brain injury and Alzheimer’s disease: a review. Prog Brain Res 161:303–316

    Article  Google Scholar 

  • Wacker JL, Huang SY, Steele AD, Aron R, Lotz GP, Nguyen Q, Giorgini F, Roberson ED, Lindquist S, Masliah E, Muchowski PJ (2009) Loss of Hsp70 exacerbates pathogenesis but not levels of fibrillar aggregates in a mouse model of Huntington’s disease. J Neurosci 29:9104–9114

    Article  PubMed  CAS  Google Scholar 

  • Wang HC, Ma YB (2010) Experimental models of traumatic axonal injury. J Clin Neurosci 17:157–162

    Article  PubMed  Google Scholar 

  • Wesson DW, Levy E, Nixon RA, Wilson DA (2010) Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer’s disease mouse model. J Neurosci 30:505–514

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the Russian Foundation for Basic Research, “Genofond Dynamics” program, the Program of Presidium RAS “Fundamental Sciences to Medicine“ to N.B., I.N., N.M., A.S., and I.A., the Program of Molecular and Cellular Biology RAN to M.E., B.M., and I.G., and the NIH and from the Dynasty Foundation and BGRF (E.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Evgen’ev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobkova, N., Guzhova, I., Margulis, B. et al. Dynamics of endogenous Hsp70 synthesis in the brain of olfactory bulbectomized mice. Cell Stress and Chaperones 18, 109–118 (2013). https://doi.org/10.1007/s12192-012-0359-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-012-0359-x

Keywords

Navigation