Skip to main content

Advertisement

Log in

Megakaryopoiesis and platelet function in polycythemia vera and essential thrombocythemia patients with JAK2 V617F mutation

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Patients with Ph chromosome negative myeloproliferative disease (Ph-MPD) have an increased risk of vascular complications. It remains controversial whether patients with the JAK2 V617F mutation (V617F) exhibit increased risk, while recent growing evidence has shown a critical role for V617F in clonal erythropoiesis in Ph-MPD. We studied 53 patients with Ph-MPD especially in relation to megakaryopoiesis, the thrombotic complications and the presence of V617F. Using novel mutation-specific PCR which is a highly sensitive PCR-based assay for detection of JAK2 mutated allele(s), we identified V617F in 38 Ph-MPD, which include 13 polycythemia vera (PV), 23 essential thrombocythemia (ET) and 2 chronic idiopatic myelofibrosis. The numbers of megakaryocytes were significantly increased in PV and ET patients with V617F, but the platelet counts were slightly lower. Although statistically not significant, the incidence of thrombotic events was higher in the group with V617F compared to in those without the mutation. Agonist-induced in vitro platelet aggregation and platelet adhesion were not affected by the presence of this mutation. Nonetheless, we found a hypercoagulable state in Ph-CMPD with V617F by employing whole blood thromboelastography. It suggests pre-thrombotic tendencies in CMPD are complex and JAK2 V617F mutation might have a role in vivo blood coagulation by altering not only the number, but function(s) of all three myeloid cells, including red blood cells, white blood cells and platelets in Ph-CMPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baxter EJ, Scott LM, Campbell PJ, et al. Aquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.

    Article  CAS  PubMed  Google Scholar 

  2. Levine RL, Wadleigh M, Cools J, et al. Activation mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.

    Article  CAS  PubMed  Google Scholar 

  3. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorder. N Engl J Med. 2005;352:1779–90.

    Article  CAS  PubMed  Google Scholar 

  5. Mesa RA, Verstovsek S, Cervantes F, et al. Primary myelofibrosis (PMF), post polycythemia vera myelofibrosis (post-PV MF), post essential thrombocythemia myelofibrosis (post-ET MF), blast phase PMF (PMF-BP): consensus on terminology by the international working group for myelofibrosis research and treatment (IWG-MRT). Leuk Res. 2007;31:737–40.

    Article  PubMed  Google Scholar 

  6. Tefferi A, Thiele J, Orazi A, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood. 2007;110:1092–7.

    Article  CAS  PubMed  Google Scholar 

  7. Michiels JJ, De Raeve H, Hebeda K, et al. WHO bone marrow features and European clinical, molecular, and pathological (ECMP) criteria for the diagnosis of myeloproliferative disorders. Leuk Res. 2007;31:1031–8.

    Article  CAS  PubMed  Google Scholar 

  8. Michiels JJ, De Raeve H, Berneman Z, et al. The 2001 World Health Organization and updated European clinical and pathological criteria for the diagnosis, classification, and staging of the Philadelphia chromosome-negative chronic myeloproliferative disorders. Semin Thromb Hemost. 2006;32:307–40.

    Article  PubMed  Google Scholar 

  9. Scott LM, Scott MA, Campbell PJ, Green AR. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood. 2006;108:2435–7.

    Article  CAS  PubMed  Google Scholar 

  10. Jamieson CH, Gotlib J, Durocher JA, et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci USA. 2006;103:6224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lippert E, Boissinot M, Kralovics R, et al. The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood. 2006;108:1865–7.

    Article  CAS  PubMed  Google Scholar 

  12. Dupont S, Massé A, James C, et al. The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood. 2007;110:1013–21.

    Article  CAS  PubMed  Google Scholar 

  13. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006;107:4274–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bumm TG, Elsea C, Corbin AS, et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res. 2006;66:11156–65.

    Article  CAS  PubMed  Google Scholar 

  15. Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108:1652–60.

    Article  CAS  PubMed  Google Scholar 

  16. Zaleskas VM, Krause DS, Lazarides K, et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLos ONE. 2006;1:e18.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jaffe ES, Harris NL, Stein H, Vardiman JW (eds.). World Health Organization classification of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2001, p. 15–44.

  18. Salzman EW. Measurement of platelet adhesiveness: a simple in vitro technique demonstrating an abnormality in von Willebrand’s disease. J Lab Clin Med. 1963;62:724–35.

    CAS  PubMed  Google Scholar 

  19. Born GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962;194:927–9.

    Article  CAS  PubMed  Google Scholar 

  20. Castaldi PA, Rozenberg MC, Stewart JH. The bleeding disorder of uremia: a qualitative platelet defect. Lancet. 1966;2:66–9.

    Article  CAS  PubMed  Google Scholar 

  21. Sambrook J, Russell D. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 2001.

  22. Fukuchi K, Nakamura K, Ichimura S, et al. The association of cyclin A and cyclin kinase inhibitor p21 in response to gamma-irradiation requires the CDK2 binding region, but not the Cy motif. Biochim Biophys Acta. 2003;1642:163–71.

    Article  CAS  PubMed  Google Scholar 

  23. Jelinek J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood. 2005;106:3370–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steensma DP, Dewald GW, Lasho TL, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood. 2005;106:1207–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tefferi A, Gilliland DG. Oncogenes in myeloproliferative disorders. Cell Cycle. 2007:550–66.

  26. Rudzki Z, Sacha T, Stoj A, et al. The gain of function JAK2 V617F mutation shifts the phenotype of essential thrombocythaemia and chronic idiopathic myelofibrosis to more “erythremic” and less “throbocythemic”: a molecular, histologic, and clinical study. Int J of Hematol. 2007;86:130–6.

    Article  CAS  Google Scholar 

  27. Wolanskyj AP, Lasho TL, Schwager SM, et al. JAK2 mutation in essential thrombocythaemia: clinical associations and long-term prognostic relevance. Br J Haematol. 2005;131:208–13.

    Article  CAS  PubMed  Google Scholar 

  28. Campbell PJ, Scott LM, Buck G, et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet. 2005;366:1945–53.

    Article  CAS  PubMed  Google Scholar 

  29. Antonioli E, Guglielmelli P, Poli G, et al. Myeloproliferative Disorders Research Consortium (MPD-RC). Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica. 2008;93:41–8.

    Article  CAS  PubMed  Google Scholar 

  30. Delhommeau F, Pisani DF, James C, Casadevall N, Constantinescu S, Vainchenker W. Oncogenic mechanisms in myeloproliferative disorders. Cell Mol Life Sci. 2006;63:2939–53.

    Article  CAS  PubMed  Google Scholar 

  31. Van Genderen PJ, Michiels JJ, Van Strik R, Lindemans J, van Vliet HH. Platelet consumption in thrombocythemia complicated by erythromelalgia: reversal by aspirin. Thromb Haemost. 1995;73:210–4.

    PubMed  Google Scholar 

  32. Samoszuk M, Corwin M, Hazen SL. Effects of human mast cell tryptase and eosinophil granule proteins on the kinetics of blood clotting. Am J Hematol. 2003;73:18–25.

    Article  CAS  PubMed  Google Scholar 

  33. Carroll RC, Craft RM, Chavez JJ, Snider CC, Bresee SJ, Cohen E. A thrombelastograph whole blood assay for clinical monitoring of NSAID-insensitive transcellular platelet activation by arachidonic acid. J Lab Clin Med. 2005;146:30–5.

    Article  CAS  PubMed  Google Scholar 

  34. Falanga A, Marchetti M, Vignoli A, Balducci D, Barbui T. Leukocyte–platelet interaction in patients with essential thrombocythemia and polycythemia vera. Exp Hematol. 2005;33:523–30.

    Article  CAS  PubMed  Google Scholar 

  35. Mesa RA, Nagorney DS, Schwager S, Allred J, Tefferi A. Palliative goals, patient selection, and perioperative platelet management: outcomes and lessons from 3 decades of splenectomy for myelofibrosis with myeloid metaplasia at the Mayo Clinic. Cancer. 2006;107:361–70.

    Article  PubMed  Google Scholar 

  36. Landolfi R, Di Gennaro L, Barbui T, et al. European Collaboration on Low-Dose Aspirin in Polycythemia Vera (ECLAP). Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood. 2007;109:2446–52.

    Article  CAS  PubMed  Google Scholar 

  37. Carobbio A, Finazzi G, Guerini V, et al. Leukocytosis is a risk factor for thrombosis in essential thrombocythemia: interaction with treatment, standard risk factors, and Jak2 mutation status. Blood. 2007;109:2310–3.

    Article  CAS  PubMed  Google Scholar 

  38. Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1,182 patients. Blood. 2006;108:3472–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Toshiko Yamochi and Hidekazu Ota in second department of pathology, my colleagues for providing the biopsy specimens, and Mrs. Atsuko Nagasawa for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norimichi Hattori.

About this article

Cite this article

Hattori, N., Fukuchi, K., Nakashima, H. et al. Megakaryopoiesis and platelet function in polycythemia vera and essential thrombocythemia patients with JAK2 V617F mutation. Int J Hematol 88, 181–188 (2008). https://doi.org/10.1007/s12185-008-0129-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-008-0129-9

Keywords

Navigation