Skip to main content
Log in

High Levels of Genetic Diversity in Salix viminalis of the Czech Republic as Revealed by Microsatellite Markers

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Willows (Salix spp.) grown as short rotation coppice are recognised as an important bioenergy crop, and breeding programmes are underway in several countries, including the Czech Republic. The basket willow Salix viminalis is one of the few willow species that is widespread in the Czech Republic and thus a potential source of diversity, but the most extensive germplasm collection available shows evidence of redundancy. To investigate levels of variation in natural populations of this species for use in crop improvement programmes, a set of 38 microsatellite markers was used to assess genetic diversity and population structure among 84 S. viminalis individuals collected from seven Czech rivers (the Odra, Bečva, Morava, Dyje, Jihlava, Sázava and Vltava), covering a wide geographic distribution. The markers detected 6.95 alleles per locus on average with 92 % of the sampled individuals having a unique multilocus genotype giving a high clonal richness measure among all samples (R = 0.952). Three sets of putative clones (with identical genotypes as determined by the markers used here) were also identified. Significant levels of genetic diversity were revealed within all sampling sites. With the exception of sites on the Odra and Morava, pairwise F ST (0.02–0.1) values indicated moderate differentiation between sites. Principal coordinates analysis revealed some separation of the Dyje individuals from all others. This was in agreement with the population structure results derived from Bayesian analyses using STRUCTURE software. These results provide the first evidence that potentially useful levels of genotypic variation are present within natural S. viminalis populations in the Czech Republic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weger J VP, Zánová I, Havlíčková K, The results of the evaluation of selected willow and poplar clones for short rotation coppice (SRC) in second harvesting period in conditions of the Czech Republic. In: 14th European Conference and exhibition Biomass for Energy, Industry and Climate Protection, Paris, 2005 2005. ETA Florence and WIP-Munich, pp 465–468

  2. Mola-Yudego B, Pelkonen P (2011) Pulling effects of district heating plants on the adoption and spread of willow plantations for biomass: the power plant in Enköping (Sweden). Biomass Bioenergy 35(7):2986–2992. doi:10.1016/j.biombioe.2011.03.040

    Article  Google Scholar 

  3. Stolarski MJ, Szczukowski S, Tworkowski J, Klasa A (2011) Willow biomass production under conditions of low-input agriculture on marginal soils. Forest Ecol Manage 262(8):1558–1566. doi:10.1016/j.foreco.2011.07.004

    Article  Google Scholar 

  4. Buchholz T, Volk T (2011) Improving the profitability of willow crops—identifying opportunities with a crop budget model. BioEnergy Research 4(2):85–95. doi:10.1007/s12155-010-9103-5

    Article  Google Scholar 

  5. Ahman I, Larsson S (1994) Genetic improvement of willow (Salix) as a source of bioenergy. Norwegian J Agri Sci Suppl 0(18):47–56

    Google Scholar 

  6. Karp A, Hanley SJ, Trybush SO, Macalpine W, Pei M, Shield I (2011) Genetic improvement of Willow for bioenergy and biofuels. J Integr Plant Biol 53(2):151–165. doi:10.1111/j.1744-7909.2010.01015.x

    Article  PubMed  Google Scholar 

  7. Przyborowski JA, Sulima P (2010) The analysis of genetic diversity of Salix viminalis genotypes as a potential source of biomass by RAPD markers. Ind Crop Prod 31(2):395–400

    Article  CAS  Google Scholar 

  8. Barker JHA, Matthes M, Arnold GM, Edwards KJ, Ahman I, Larsson S et al (1999) Characterisation of genetic diversity in potential biomass willows (Salix spp.) by RAPD and AFLP analyses. Genome 42(2):173–183

    PubMed  CAS  Google Scholar 

  9. Larcher W (1969) Physiological approaches to measurement of photosynthesis in relation to dry matter production by trees. Photosynthetica 3(2):150

    CAS  Google Scholar 

  10. Barsoum N (2001) Relative contributions of sexual and asexual regeneration strategies in Populus nigra and Salix alba during the first years of establishment on a braided gravel bed river. Evol Ecol 15(4–6):255–279

    Article  Google Scholar 

  11. Karrenberg S, Blaser S, Kollmann J, Speck T, Edwards PJ (2003) Root anchorage of saplings and cuttings of woody pioneer species in a riparian environment. Funct Ecol 17(2):170–177

    Article  Google Scholar 

  12. Skvortsov AK (1999) Two new species of Salix (Salicaceae) from Eastern Asia. Harv Pap Bot 4(1):323–326

    Google Scholar 

  13. Storme V (2004) Ex-situ conservation of black poplar in Europe: genetic diversity in nine gene bank collections and their value for nature development. Theor Appl Genet 108(6):969–981

    Article  PubMed  CAS  Google Scholar 

  14. Pospíšková M, Šálková I (2006) Population structure and parentage analysis of black poplar along the Morava River. Can J For Res 36(5):1067–1076. doi:10.1139/x06-003

    Article  Google Scholar 

  15. Smulders MJM, Cottrell JE, Lefevre F, van der Schoot J, Arens P, Vosman B et al (2008) Structure of the genetic diversity in black poplar (Populus nigra L.) populations across European river systems: consequences for conservation and restoration. Forest Ecol Manage 255(5–6):1388–1399. doi:10.1016/j.foreco.2007.10.063

    Article  Google Scholar 

  16. Lin J, Gibbs JP, Smart LB (2009) Population genetic structure of native versus naturalized sympatric shrub willows (Salix; Salicaceae). Am J Bot 96(4):771–785. doi:10.3732/ajb.0800321

    Article  PubMed  Google Scholar 

  17. Lascoux M, Thorsen J, Gullberg U (1996) Population structure of a riparian willow species, Salix viminalis L. Genet Res 68(1):45–54

    Article  Google Scholar 

  18. Hejný S, Slavík B [eds.] (2003) Flora of the Czech Republic. Vol. 2. Praha, Academia, 540 s. ISBN 80-200-1089-0

  19. Chmelar J, Meusel W (1976) The willows of Europe. A. Ziemsen, Wittenberg Lutherstadt German Democratic Republic

  20. Neumann A (1981) The Central European species of Salix (Die mitteleuropaischen Salix-Arten.). Mitteilungen der Forstlichen Bundesversuchsanstalt Wien (134):152 p

  21. Chmelar J (1987) Salicetum—list of plants. Agricultural University, Brno

  22. Trybush S, Jahodova S, Macalpine W, Karp A (2008) A genetic study of a Salix Germplasm resource reveals new insights into relationships among subgenera, sections and species. BioEnergy Research 1(1):67–79

    Article  Google Scholar 

  23. Dynesius M, Nilsson C (1994) Fragmentation and flow regulation of river systems in the northern 3rd of the world. Science 266(5186):753–762. doi:10.1126/science.266.5186.753

    Article  PubMed  CAS  Google Scholar 

  24. Skvortsov AK (1999) Willows of Russia and adjacent countries: taxonomical and geographical revision. University of Joensuu, Joensuu, Finland

  25. Barker JHA, Pahlich A, Trybush S, Edwards KJ, Karp A (2003) Microsatellite markers for diverse Salix species. Mol Ecol Notes 3(1):4–6

    Article  CAS  Google Scholar 

  26. Hanley S, Barker JHA, van Ooijen JW, Aldam C, Harris SL, Ahman I et al (2002) A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers. Theor Appl Genet 105(6/7):1087–1096. doi:10.1007/s00122-002-0979-0

    PubMed  CAS  Google Scholar 

  27. Dyer RJ (2009) GeneticStudio: a suite of programs for spatial analysis of genetic-marker data. Mol Ecol Resour 9(1):110–113

    Article  PubMed  Google Scholar 

  28. Dyer RJ, Nason JD (2004) Population graphs: the graph theoretic shape of genetic structure. Mol Ecol 13(7):1713–1727

    Article  PubMed  Google Scholar 

  29. Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89(3):339–350

    Article  Google Scholar 

  30. Ellstrand NC, Roose ML (1987) Patterns of genotypic diversity in clonal plant species. Am J Bot 74:123–131

    Article  Google Scholar 

  31. Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4:792–794

    Article  Google Scholar 

  32. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6:288–295

    Article  Google Scholar 

  33. Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92(7):832–839

    Article  Google Scholar 

  34. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86(6):485–486

    Google Scholar 

  35. Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  36. Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Enfield Science Publishers, Montpellier, pp 43–76

    Google Scholar 

  37. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    PubMed  CAS  Google Scholar 

  38. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587

    PubMed  CAS  Google Scholar 

  39. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14(8):2611–2620

    Article  PubMed  CAS  Google Scholar 

  40. Earl Dent A, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. doi:10.1007/s12686-011-9548-7

  41. Pospiskova M (2004) Genetic diversity of a black poplar population in the Morava river basin assessed by microsatellite analysis. For Genet 11(3/4):257–262

    CAS  Google Scholar 

  42. De Woody J, Rickman TH, Jones BE, Hipkins VD (2009) Allozyme and microsatellite data reveal small clone size and high genetic diversity in aspen in the southern Cascade Mountains. Forest Ecol Manage 258(5):687–696. doi:10.1016/j.foreco.2009.05.006

    Article  Google Scholar 

  43. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13(5):1143–1155. doi:10.1111/j.1365-294X.2004.02141.x

    Article  PubMed  CAS  Google Scholar 

  44. González E, González-Sanchis M, Cabezas Á, Comín F, Muller E (2010) Recent changes in the Riparian Forest of a large regulated Mediterranean River: implications for management. Environ Manage 45(4):669–681. doi:10.1007/s00267-010-9441-2

    Article  PubMed  Google Scholar 

  45. Moggridge HL, Gurnell AM (2009) Controls on the sexual and asexual regeneration of Salicaceae along a highly dynamic, braided river system. Aquat Sci 71(3):305–317. doi:10.1007/s00027-009-9193-3

    Article  Google Scholar 

  46. Gom LA (1999) The discrimination of cottonwood clones in a mature grove along the Oldman River in southern Alberta. Canadian Journal of Botany-Revue Canadienne De Botanique 77(8):1084–1094

    Article  Google Scholar 

  47. Douhovnikoff V (2005) Salix exigua clonal growth and population dynamics in relation to disturbance regime variation. Ecology 86(2):446–452

    Article  Google Scholar 

  48. Lin D, Hubbes M, Zsuffa L (1994) Differentiation of poplar and willow clones using RAPD fingerprints. In: Proceedings from the International Energy Agency (IEA). The Bioenergy Agreement Task VIII meeting, held in Biri, Norway, 4–9 Sept 1994. Genetic improvement of trees and shrubs, pest/disease control, exchange, evaluation and joint testing for energy purposes. pp 67–81

  49. Larsson G, Bremer B (1991) Osier willows—useful plants then and now (Korgviden—nyttovaxter forr och nu). Sven Bot Tidskr 85(3):185–200

    Google Scholar 

  50. Ronnberg-Wastljung AC (2001) Genetic structure of growth and phenological traits in Salix viminalis. Can J For Res 31(2):276–282. doi:10.1139/cjfr-31-2-276

    Google Scholar 

  51. Sacchi CF, Price PW, Craig TP, Itami JK (1988) Impact of shoot galler attack on sexual reproduction in the arroyo willow. Ecology (Washington DC) 69(6):2021–2030

    Google Scholar 

  52. Vansplunder I, Coops H, Voesenek L, Blom C (1995) Establishment of alluvial forest species in floodplains—the role of dispersal timing, germination characteristics and water-level fluctuations. Acta Bot Neerl 44(3):269–278

    Google Scholar 

  53. Jelinski DE, Cheliak WM (1992) Genetic diversity and spatial subdivision of populus-tremuloides (Salicaceae) in a heterogeneous landscape. Am J Bot 79(7):728–736. doi:10.2307/2444937

    Article  Google Scholar 

  54. Mahoney J, Rood S (1998) Streamflow requirements for cottonwood seedling recruitment—an integrative model. Wetlands 18(4):634–645. doi:10.1007/bf03161678

    Article  Google Scholar 

  55. Lascoux M, Ramstedt M, Astrom B, Gullberg U (1996) Components of resistance of leaf rust (Melampsora laricii epitea Kleb./Melampsora ribesii-viminalis Kleb.) in Salix viminalis L. Theor Appl Genet 93(8):1310–1318

    Article  Google Scholar 

  56. Kasala K (2004) Hlavatá vrba. In: In Lužní les: v Dyjsko-moravské nivě. Moraviapress, Břeclav, pp 251–262

  57. Zimova R (2005) Kartografická analýza map historických vojenských mapování. In: Svatoňová H (ed) Proceedings of 13th International Conference, Brno, 6.-7.9.2005. Masaryk University Brno, Brno, p 70

  58. Imbert E (2003) Dispersal and gene flow of Populus nigra (Salicaceae) along a dynamic river system. J Ecol 91(3):447–456

    Article  Google Scholar 

  59. Adams WT (1992) Gene dispersal within forest tree populations. New Forests 6(1):217–240. doi:10.1007/bf00120646

    Article  Google Scholar 

  60. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philosophical Transactions: Biological Sciences 351(1345):1291–1298

    Article  Google Scholar 

  61. Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forests 6(1):95–124. doi:10.1007/bf00120641

    Article  Google Scholar 

  62. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  63. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Molecular Ecology Notes 4:137–138

    Article  Google Scholar 

  64. StatSoft, Inc. (2003). STATISTICA (data analysis software system), version 6. www.statsoft.com

Download references

Acknowledgements

We would like to express our sincere gratitude to Vladimír Čížek for his expertise in sourcing and collection of the plant material for this study. We thank Irina Kadis, translator of Skvortsov's Willows of Russia and Adjacent Countries, for her valuable comments and William Macalpine (Rothamsted Research, UK) for his indispensable help on the collecting expedition. This work was funded in part by the Bioenergy and Climate Change Institute Strategic Grant awarded to Rothamsted Research and an ERANET-Bioenergy grant (BB/G00580X/1), both awarded by the Bioscience and Biotechnology Sciences Research Council of the UK. Šárka Jahodová’s work was conducted within the frame of long-term research plans AV0Z60050516 (Academy of Sciences of the Czech Republic) and MSM0021620828 (Ministry of Education, Youth and Sports of the Czech Republic). The work of Luďka Čížková was funded by the Ministry of Agriculture of the Czech Republic (project Nos. MZE 0002070203 and 30404/08-16210/VZ-39).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sviatlana O Trybush.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trybush, S.O., Jahodová, Š., Čížková, L. et al. High Levels of Genetic Diversity in Salix viminalis of the Czech Republic as Revealed by Microsatellite Markers. Bioenerg. Res. 5, 969–977 (2012). https://doi.org/10.1007/s12155-012-9212-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9212-4

Keywords

Navigation