Skip to main content
Log in

Direct Transesterification of Castor and Jatropha Seeds for FAME Production by Microwave and Ultrasound Radiation Using a SrO Catalyst

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In the present study, we report on an optimized method for fatty acid methyl esters (FAME) production from castor and jatropha seeds. In order to identify the most effective biodiesel production method, we have compared three two-stage methods, each consisting of oil extraction (the first step) and FAME production by transesterification (the second step), with the same three techniques each conducted in one stage, i.e., direct transesterification. The three techniques are conventional heating, sonochemistry, and microwave radiation. The FAME product was analyzed by 1H NMR spectroscopy and GC-MS. The SrO catalyst was reused successfully, together with seeds containing oil residues, for 10 cycles. The highest yield of FAME, 57.2 % of the total weight of the castor seeds, and a conversion of castor oil to FAME of 99.95 % were achieved in a one-stage method lasting 5 min using microwave radiation as a heat source. Using jatropha seeds leads to a yield of 41.1 % and a 99.7 % conversion of triglyceride to FAME under microwave irradiation in a one-stage method. The direct transesterification by sonication resulted in yields of 48.2 % and 32.9 %, and a 93.6 % conversion from castor and jatropha seeds, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vicente G, Martinez M, Aracil J (2005) Optimization of Brassica carinata oil methanolysis for biodiesel production. J Am Oil Chem Soc 82:899–904

    Article  CAS  Google Scholar 

  2. Kalbande SR, More GR, Nadre RG (2008) Biodiesel production from non-edible oils of jatropha and karanj for utilization in electrical generator. Bioenerg Res 1:170–178

    Article  Google Scholar 

  3. Peiro LT, Mendez GV, Durany XG (2008) Exergy analysis of integrated waste management in the recovery and recycling of used cooking oils. Environ Sci Technol 42:4977–4981

    Article  Google Scholar 

  4. Barnard TM, Leadbeater NE, Boucher MB, Stencel LM, Wilhite BA (2007) Continuous-flow preparation of biodiesel using microwave heating. Energy Fuel 21:1777–1781

    Article  CAS  Google Scholar 

  5. Monteiro MR, Ambrozin ARP, Lião LM, Ferreir AG (2009) Determination of biodiesel blend levels in different diesel samples by 1H NMR. Fuel 88:691–696

    Article  CAS  Google Scholar 

  6. Valente OS, Silva MJd, Pasa VMD, Belchior CRP, Sodrĕ JR (2010) Fuel consumption and emissions from a diesel power generator fuelled with castor oil and soybean biodiesel. Fuel 89:3637–3642

    Article  CAS  Google Scholar 

  7. Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed with a high content of free fatty acids. Bioresour Technol 99:1716–1721

    Article  PubMed  CAS  Google Scholar 

  8. Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091

    Article  PubMed  CAS  Google Scholar 

  9. Meneghetti SMP, Meneghetti MR, Wolf CR, Silva EC, Lima GES, Coimbra MA, et al. (2006) Ethanolysis of castor and cottonseed oil: a systematic study using classical catalysts. J Am Oil Chem Soc 83:819–822

    Article  CAS  Google Scholar 

  10. Santana GCS, Martins PF, da Silva N, Batistella CB, Maciel-Filho R, Wolf-Maciel MR (2010) Simulation and cost estimate for biodiesel production using castor oil. Chem Eng Res Des 88:626–632

    Article  CAS  Google Scholar 

  11. da Costa BD, Serra TM, Meneghetti SMP, Meneghetti MR (2010) Biodiesel production by ethanolysis of mixed castor and soybean oils. Fuel 89:3791–3794

    Article  Google Scholar 

  12. Ramezani K, Rowshanzamir S, Eikani MH (2010) Castor oil transesterification reaction: a kinetic study and optimization of parameters. Energy 35:4142–4148

    Article  CAS  Google Scholar 

  13. Hincapié G, Mondragón F, López D (2011) Conventional and in situ transesterification of castor seed oil for biodiesel production. Fuel 90:1618–1623

    Article  Google Scholar 

  14. Wenlei X, Hong P, Ligong C (2006) Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl Catal A: Gen 300:67–74

    Article  Google Scholar 

  15. Yang FX, Su YQ, Li XH, Zhang Q, Sun RC (2008) Studies on the preparation of biodiesel from Zanthoxylum bungeanum maxim seed oil. J Agric Food Chem 56:7891–7896

    Article  PubMed  CAS  Google Scholar 

  16. Rashid U, Anwar F (2008) Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol. Energy Fuel 22:1306–1312

    Article  CAS  Google Scholar 

  17. Serio MD, Cozzolino M, Giordano M, Tesser R, Patrono P, Santacesaria E (2007) From homogeneous to heterogeneous catalysts in biodiesel production. Ind Eng Chem Res 46:6379–6384

    Article  Google Scholar 

  18. Talukder MMR, Wu JC, Lau SK, Cui LC, Shimin G, Lim A (2009) Comparison of Novozym 435 and Amberlyst 15 as heterogeneous catalyst for production of biodiesel from palm fatty acid distillate. Energy Fuel 23:1–4

    Article  CAS  Google Scholar 

  19. Seki T, Kabashima H, Akutsu K (2001) Mixed Tishchenko reaction over solid base catalysts. J Catal 204:393–401

    Article  CAS  Google Scholar 

  20. Cantrell DG, Gillie LJ, Lee AF, Wilson K (2005) Structure–reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Appl Catal A: Gen 287:183–190

    Article  CAS  Google Scholar 

  21. Xuejun L, Huayang H, Yujun W, Shenlin Z (2007) Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catal Commun 8:1107–1111

    Article  Google Scholar 

  22. Buyevskaya OV, Baerns M (1998) Catalytic selective oxidation of propane. Catal Today 42:315–323

    Article  CAS  Google Scholar 

  23. Patil DP, Deng S (2009) Transesterification of Camelina sativa oil using heterogeneous metal oxide catalysts. Energy Fuel 23:4619–4624

    Article  CAS  Google Scholar 

  24. Patil DP, Gude VG, Camacho LM, Deng S (2010) Microwave-assisted catalytic transesterification of Camelina sativa oil. Energy Fuel 24:1298–1304

    Article  CAS  Google Scholar 

  25. Koberg M, Abu-Much R, Gedanken A (2011) Optimization of bio-diesel production from soybean and wastes of cooked oil: combining dielectric microwave irradiation and a SrO catalyst. Bioresour Technol 102:1073–1078

    Article  PubMed  CAS  Google Scholar 

  26. Koberg M, Cohen M, Ben-Amotz A, Gedanken A (2011) Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Bioresour Technol 102:4265–4269

    Article  PubMed  CAS  Google Scholar 

  27. Ma F, Hanna M (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  28. Zagonel G, Peralta-Zamora P, Ramos L (2004) Multivariate monitoring of soybean oil ethanolysis by FTIR. Talanta 63:1021–1025

    Article  PubMed  CAS  Google Scholar 

  29. Martín C, Moure A, Martín G, Carrillo E, Domínguez H, Parajó JC (2010) Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass Bioenergy 34:533–538

    Article  Google Scholar 

  30. Olutoye MA, Hameed BH (2011) Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg–Zn heterogeneous catalyst. Bioresour Technol 102:6392–6398

    Article  PubMed  CAS  Google Scholar 

  31. Groisman Y, Gedanken A (2008) Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. J Phys Chem C 112:8802–8808

    Article  CAS  Google Scholar 

  32. Klan P, Hajek M, Cirkva V (2001) The electrodeless discharge lamp: a prospective tool for photochemistry: part 3. The microwave photochemistry reactor. J Photochem Photobiol A: Chem 140:185–189

    Article  CAS  Google Scholar 

  33. Bang BJH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059

    Article  PubMed  CAS  Google Scholar 

  34. Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sust Energy Rev 10:248–268

    Article  CAS  Google Scholar 

Download references

Acknowledgement

M. Koberg thanks the Ministry of Science and Technology for the Ashkol Scholarship. A. Gedanken thanks the Ministry of Science and Technology for a research grant No. 3-8793 supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Gedanken.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koberg, M., Gedanken, A. Direct Transesterification of Castor and Jatropha Seeds for FAME Production by Microwave and Ultrasound Radiation Using a SrO Catalyst. Bioenerg. Res. 5, 958–968 (2012). https://doi.org/10.1007/s12155-012-9210-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9210-6

Keywords

Navigation