Skip to main content
Log in

Respiratory-gated time-of-flight PET/CT during whole-body scan for lung lesions: feasibility in a routine clinical setting and quantitative analysis

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Purpose

To demonstrate the feasibility of respiratory gating during whole-body scan for lung lesions in routine 18F-FDG PET/CT examinations using a time-of-flight (TOF)-capable scanner to determine the effect of respiratory gating on reduction of both misregistration (between CT and PET) and image blurring, and on improvement of the maximum standardized uptake value (SUVmax).

Materials and methods

Patients with lung lesions who received FDG PET/CT were prospectively studied. Misregistration, volume of PET (Vp), and SUVmax were compared between ungated and gated images. The difference in respiratory gating effects was compared between lesions located in the upper or middle lobes (UML) and the lower lobe (LL). The correlation between three parameters (% change in misregistration, % change in Vp, and lesion size) and % change in SUVmax was analyzed.

Results

The study population consisted of 60 patients (37 males, 23 females; age 68 ± 12 years) with lung lesions (2.5 ± 1.7 cm). Fifty-eight out of sixty respiratory gating studies were successfully completed with a total scan time of 20.9 ± 1.9 min. Eight patients’ data were not suitable for analysis, while the remaining 50 patients’ data were analyzed. Respiratory gating reduced both misregistration by 21.4 % (p < 0.001) and Vp by 14.2 % (p < 0.001). The SUVmax of gated images improved by 14.8 % (p < 0.001). The % change in misregistration, Vp, and SUVmax by respiratory gating tended to be larger in LL lesions than in UML lesions. The correlation with % change in SUVmax was stronger in % change in Vp (r = 0.57) than % change in misregistration (r = 0.35). There was no statistically significant correlation between lesion size and % change in SUVmax (r = −0.20).

Conclusions

Respiratory gating during whole-body scan in routine TOF PET/CT examinations is feasible and can reduce both misregistration and PET image blurring, and improve the SUVmax of lung lesions located primarily in the LL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nahmias C, Hanna WT, Wahl LM, Long MJ, Hubner KF, Townsend DW. Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med. 2007;48:744–51.

    Article  CAS  PubMed  Google Scholar 

  2. Keidar Z, Haim N, Guralnik L, Wollner M, Bar-Shalom R, Ben-Nun A, et al. PET/CT using 18F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. J Nucl Med. 2004;45:1640–6.

    PubMed  Google Scholar 

  3. Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med. 2004;45:1287–92.

    PubMed  Google Scholar 

  4. Lupi A, Zaroccolo M, Salgarello M, Malfatti V, Zanco P. The effect of 18F-FDG-PET/CT respiratory gating on detected metabolic activity in lung lesions. Ann Nucl Med. 2009;23:191–6.

    Article  CAS  PubMed  Google Scholar 

  5. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Squire OD, Braban LE, et al. Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys. 2002;29:366–71.

    Article  CAS  PubMed  Google Scholar 

  6. Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys. 2004;31:3179–86.

    Article  CAS  PubMed  Google Scholar 

  7. Pepin A, Daouk J, Bailly P, Hapdey S, Meyer ME. Management of respiratory motion in PET/computed tomography: the state of the art. Nucl Med Commun. 2014;35:113–22.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Grimm R, Furst S, Souvatzoglou M, Forman C, Hutter J, Dregely I, et al. Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI. Med Image Anal. 2015;19:110–20.

    Article  PubMed  Google Scholar 

  9. Geramifar P, Zafarghandi MS, Ghafarian P, Rahmim A, Ay MR. Respiratory-induced errors in tumor quantification and delineation in CT attenuation-corrected PET images: effects of tumor size, tumor location, and respiratory trace: a simulation study using the 4D XCAT phantom. Mol Imaging Biol. 2013;15:655–65.

    Article  PubMed  Google Scholar 

  10. Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011;56:2375–89.

    Article  CAS  PubMed  Google Scholar 

  11. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49:462–70.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Surti S. Update on time-of-flight PET imaging. J Nucl Med. 2015;56:98–105.

    Article  PubMed  Google Scholar 

  13. Werner MK, Parker JA, Kolodny GM, English JR, Palmer MR. Respiratory gating enhances imaging of pulmonary nodules and measurement of tracer uptake in FDG PET/CT. AJR Am J Roentgenol. 2009;193:1640–5.

    Article  PubMed  Google Scholar 

  14. Tahari AK, Lodge MA, Wahl RL. Respiratory-gated PET/CT versus delayed images for the quantitative evaluation of lower pulmonary and hepatic lesions. J Med Imaging Radiat Oncol. 2014;58:277–82.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kasuya T, Tateishi U, Suzuki K, Daisaki H, Nishiyama Y, Hata M, et al. Role of respiratory-gated PET/CT for pancreatic tumors: a preliminary result. Eur J Radiol. 2013;82:69–74.

    Article  PubMed  Google Scholar 

  16. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med. 2002;43:876–81.

    PubMed  Google Scholar 

  17. Garcia Vicente AM, Soriano Castrejon AM, Talavera Rubio MP, Leon Martin AA, Palomar Munoz AM, Pilkington Woll JP, et al. (18)F-FDG PET-CT respiratory gating in characterization of pulmonary lesions: approximation towards clinical indications. Ann Nucl Med. 2010;24:207–14.

    Article  CAS  PubMed  Google Scholar 

  18. von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology. 2006;238:405–22.

    Article  Google Scholar 

  19. Grootjans W, de Geus-Oei LF, Meeuwis AP, van der Vos CS, Gotthardt M, Oyen WJ, et al. Amplitude-based optimal respiratory gating in positron emission tomography in patients with primary lung cancer. Eur Radiol. 2014;24:3242–50.

    Article  PubMed  Google Scholar 

  20. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.

    Article  PubMed  Google Scholar 

  21. Fin L, Daouk J, Morvan J, Bailly P, El Esper I, Saidi L, et al. Initial clinical results for breath-hold CT-based processing of respiratory-gated PET acquisitions. Eur J Nucl Med Mol Imaging. 2008;35:1971–80.

    Article  PubMed  Google Scholar 

  22. Guerra L, De Ponti E, Elisei F, Bettinardi V, Landoni C, Picchio M, et al. Respiratory gated PET/CT in a European multicentre retrospective study: added diagnostic value in detection and characterization of lung lesions. Eur J Nucl Med Mol Imaging. 2012;39:1381–90.

    Article  PubMed  Google Scholar 

  23. Alkhawaldeh K, Bural G, Kumar R, Alavi A. Impact of dual-time-point (18)F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging. 2008;35:246–52.

    Article  PubMed  Google Scholar 

  24. Wade OL. Movements of the thoracic cage and diaphragm in respiration. J Physiol. 1954;124:193–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohisa Suzawa.

Ethics declarations

Conflict of interest

The authors declare no conflicting financial interest and no funding. No potential conflicts of interest were disclosed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzawa, N., Ichikawa, Y., Ishida, M. et al. Respiratory-gated time-of-flight PET/CT during whole-body scan for lung lesions: feasibility in a routine clinical setting and quantitative analysis. Ann Nucl Med 30, 722–730 (2016). https://doi.org/10.1007/s12149-016-1118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-016-1118-3

Keywords

Navigation