Skip to main content

Advertisement

Log in

Glioblastoma: changing expectations?

  • Educational Series/Purple Series
  • Multidisciplinary Approach to Cancer Treatment
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma (GB) represents the most aggressive glioma in the adult population. Despite recent research efforts, the prognosis of patients with GB has remained dismal. Lately, the knowledge of genetic information about gliomagenesis has increased; we even have a classification of the genetic expression of the tumour. The main problem is that at the moment we do not have any therapeutical resources to help us better treat these tumours, as we can do, with others tumours like breast, lung and colorectal cancer. We have also improved on diagnostic imaging, especially with the new MRI sequences; we can now better define the characteristics of the tumour area and the surrounding brain structures, allowing us to adjust resections. Thanks to the most advanced surgery techniques, such as neuronavigation, intraoperative control of the nervous function and the tumour volume, the neurosurgeon is able to complete tumour exeresis with less morbidity. These imaging techniques allow the radiation oncologist to better contour the irradiation target volume, the structures and the organs at risk, to diminish the irradiation of apparently healthy tissue. Nowadays, knowledge of brain stem cells provides new expectations for future treatments. Novel targeted agents such as bevacizumab, imatinib, erlotinib, temsirolimus, immunotherapy, cilengitide, talampanel, etc. are helping classical chemotherapeutic agents, like temozolomide, to achieve an increase in overall survival. The main objective is to improve median overall survival, which is currently between 9 and 12 months, with a good quality of life, measured by the ability to carry out daily life activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almenar Medina S (2009) Anatomía Patológica. Biología Molecular. In: Arribas L, Badal MD, Clavo B et al (eds) Tumores del Sistema Nervioso Central. MPG, Madrid, pp 49–78

    Google Scholar 

  2. Martínez López E, Sola Galarza A, Rico Osés M (2009) Gliomas de Alto grado. In: Arribas L, Badal MD, Clavo B et al (eds) Tumores del Sistema Nervioso Central. MPG, Madrid, pp 205–222

    Google Scholar 

  3. Wiltshire RN, Rasheed BKA, Friedman HS et al (2000) Comparative genetic patterns of glioblastoma multiforme: potential diagnostic tool for tumor classification. Neuro Oncol 2:164–173

    PubMed  CAS  Google Scholar 

  4. Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  PubMed  CAS  Google Scholar 

  5. Fujisawa H, Kurrer M, Reis RM et al (1999) Acquisition of the GB phenotype during astrocytoma progression is associated with loss of heterozygosity on 10q25-qter. Am J Pathol 155:387–394

    Article  PubMed  CAS  Google Scholar 

  6. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary GB. Am J Pathol 170: 1445–1453

    Article  PubMed  CAS  Google Scholar 

  7. Verger E, Vargas M, Valdueco I (2010) Tumores del SNC. In: Calvo FA, Biete A, Pedraza V et al (eds) OncologÍa Radioterápica, principios, métodos, gestión y práctica clínica. Aran, Madrid, pp 589–600

    Google Scholar 

  8. Balaña C, Capellades J, Teixidor P et al (2007) Clinical course of high grade glioma patients with a “biopsy-only” surgical approach: a need for individualised treatment. Clin Transl Oncol 9:797–803

    Article  PubMed  Google Scholar 

  9. Miyamoto C (2001) Radiation therapy principles for high grade gliomas. In: Petrovic Z, Brady LW, Apuzzo ML, Bamberg M (eds) Combine modality therapy of central nervous system tumors. Springer Verlag, Berlin, pp 345–360

    Google Scholar 

  10. Donahue BR (2008) Adult gliomas. In: Lu JJ, Brady LW, Heilmann HP et al (eds) Radiation oncology: an evidence-based approach. Springer Verlag, Berlin, pp 483–500

    Chapter  Google Scholar 

  11. Curran WJ Jr, Scott CB, Horton J et al (1993) Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant trials. J Natl Cancer Inst 85:704–710

    Article  PubMed  Google Scholar 

  12. Combs SE, Wagner J, Bischof M et al (2008) Postoperative treatment of primary glioblastoma multiforme with radiation and concomitant temozolomide in elderly patients. Int J Rad Oncol Biol Phys 70:987–992

    Article  Google Scholar 

  13. Salcman M (1993) Intrinsic cerebral glioma In: Appuzzo MLJ (ed.) Brain surgery: complication avoidance and management. Churchill Livingstone, New York, pp 379–390

    Google Scholar 

  14. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with GB. Prognosis, extent of resection and survival. J Neurosurg 95:190–198

    Article  PubMed  CAS  Google Scholar 

  15. Keles GE, Lamborn KL, Chang SM et al (2004) Volume of residual disease as a predictor of outcome in adult patients with recurrent supratentorial GB who are undergoing chemotherapy. J Neurosurg 100:41–46

    Article  PubMed  Google Scholar 

  16. Chu RM, Black KL (2006) Current management of high grade gliomas. In: Schmideck HH, Schmideck and Sweet operative neurosurgical techniques. Saunders, Philadelphia, pp 665–670

    Google Scholar 

  17. Harsh GR IV (2006) Surgical management of recurrent gliomas. In: Schmideck HH, Schmideck and Sweet operative neurosurgical techniques. Saunders, Philadelphia, pp 707–719

    Google Scholar 

  18. Stummer W, Pichlmeier U, Meinel T et al (2006) For the ALA-Glioma study Group. Fluorescenceguided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicenter phase III trial. Lancet Oncol 7:392–401

    Article  PubMed  CAS  Google Scholar 

  19. Stummer W, Reulen HJ, Meinel T et al (2008) Extent of resection and survival in GB: identification and adjustment for bias. Neurosurgery 62: 564–576

    Article  PubMed  Google Scholar 

  20. Pichlmeier U, Bink A, Schackert G, Stummer W (2008) ALA Glioma Study Group. Resection and survival in GB: an RTOG recursive partitioning analysis of ALA study patients. Neuro Oncol 10:1025–1034

    Article  PubMed  Google Scholar 

  21. Hefti M, von Campe G, Moschopulosa M et al (2008) 5-Aminolaevulinic acid-induced protoporphyrin IX fluorescence in high-grade glioma surgery. Swiss Med Wkly 138:180–185

    PubMed  CAS  Google Scholar 

  22. Brem H, Piantadosi S, Burger PC et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet 345:1008–1012

    Article  PubMed  CAS  Google Scholar 

  23. Valtonen S, Timonen U, Toivanan P et al (1997) Interstitial chemotherapy with carmustine-loaded polymers for high grade gliomas: a randomized double-blind study. Neurosurgery 41:44–48

    Article  PubMed  CAS  Google Scholar 

  24. Westphal M, Ram Z, Riddle V et al (2006) Gliadel wafer in initial surgery for malignant glioma: long term follow up of a multicenter controlled trial. Acta Neurochir Wien 148:269–275

    Article  PubMed  CAS  Google Scholar 

  25. Bota A, Desjardins A, Quinn J et al (2007) Interstitial chemotherapy with biodegradable BCNU wafers in the treatment of malignant gliomas. Therap Clin Risks Manag 3:707–715

    CAS  Google Scholar 

  26. McGirt MJ, Brem H (2010) Carmustine wafers (gliadel) plus concomitant temozolomide therapy after resection of malignant astrocytoma: growing evidence for safety and efficacy. Ann Surg Oncol 17:1729–1731

    Article  PubMed  Google Scholar 

  27. Wernicke AG, Sherr DL, Schwartz TH et al (2010) Feasibility and safety of GliaSite brachytherapy in treatment of CNS tumors following neurosurgical resection. J Cancer Res Ther 6:65–74

    Article  PubMed  Google Scholar 

  28. Chan TA, Weingart JD, Parisi M et al (2005) J Clin Oncol ASCO Annual Meeting Proceedings. 23[16S], Part I of II (June 1 Supplement)

  29. Butowski NA, Sneed PK, Chang SM (2006) Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol 24:1273–1280

    Article  PubMed  CAS  Google Scholar 

  30. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma multiforme. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  31. Tsao M, Mehta M, Whelan T et al (2005) The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence based review of the role of radiosurgery for malignant glioma. Int J Rad Oncol Biol Phys 63:47–55

    Article  Google Scholar 

  32. Ortiz de Urbina D, Santos M, García Berrocal MI et al (1995) Intraoperative radiation therapy in malignant gliomas: early clinical results. Neurol Res 17:289–294

    PubMed  CAS  Google Scholar 

  33. Fogh SE, Andrews DW, Glass J et al (2010) Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high grade gliomas. J Clin Oncol 28:3048–3053

    Article  PubMed  Google Scholar 

  34. Patel M, Siddiqui F, Jin JY et al (2009) Salvage reirradiation for recurrence GB with radiosurgery: radiographic response and improved survival. J Neurooncol 92:185–191

    Article  PubMed  Google Scholar 

  35. Evers P, Lee PP, DeMarco J et al (2010) Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant gliomas. BMC Cancer 10:384

    Article  PubMed  Google Scholar 

  36. Glantz M, Chamberlain M, Liu Q et al (2003) Temozolomide as an alternative to irradiation for elderly patients with newly diagnosed malignant gliomas. Cancer 2262:2266

    Google Scholar 

  37. Stupp R, Mason WP, van den Bent MJ et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in Glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  PubMed  CAS  Google Scholar 

  38. Berrocal A, Perez-Segura P, Gil M et al (2006) Phase II study of extended schedule temozolomide in refractory gliomas [abstract 1516]. J Clin Oncol 24[Suppl]:62s

    Google Scholar 

  39. Wick W, Steinbach JP, Kuker WM et al (2004) One week on/one week off: a novel active regimen of temozolomide for recurrent Glioblastoma. Neurology 62:2113–2115

    PubMed  CAS  Google Scholar 

  40. Friedman HS, Prados MD, We PY et al (2009) Bevacizumab alone and in combination with irinotecan in recurrent GB. J Clin Oncol 27:4733–4740

    Article  PubMed  CAS  Google Scholar 

  41. Kreisl TN, Kim L, Moore K et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27: 740–745

    Article  PubMed  CAS  Google Scholar 

  42. Dresemann G, Weller M, Rosenthal MA et al (2010) Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide. J Neurooncol 96:393–402

    Article  PubMed  CAS  Google Scholar 

  43. Yung WK, Vredenburgh JJ, Cloughesy TF et al (2010) Safety and efficacy of erlotinib in firstrelapse glioblastoma: a phase II open-label study. Neuro Oncol 12:1061–1070

    Article  PubMed  CAS  Google Scholar 

  44. Sathornsumetee S, Desjardins A, Vredenburgh JJ et al (2010) Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro Oncol 12:1300–1310

    PubMed  CAS  Google Scholar 

  45. Galanis E, Buckner JC, Maurer MJ et al (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23:5294–5304

    Article  PubMed  CAS  Google Scholar 

  46. Haselbalch B, Lassen U, Hansen S et al (2010) Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a phase II trial. Neuro Oncol 12:508–516

    Google Scholar 

  47. Lia A, Tran A, Nqhiemphu PL et al (2011) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed GB. J Clin Oncol 29:142–148

    Article  Google Scholar 

  48. Sampson JH, Heimberger AB, Archer GE et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leoncio Arribas Alpuente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arribas Alpuente, L., Menéndez López, A. & Yayá Tur, R. Glioblastoma: changing expectations?. Clin Transl Oncol 13, 240–248 (2011). https://doi.org/10.1007/s12094-011-0648-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-011-0648-3

Keywords

Navigation