Skip to main content
Log in

Transcriptional Regulation of Seven ERFs in Rice Under Oxygen Depletion and Iron Overload Stress

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Submergence can affect plant development due to the stress of oxygen depletion. Another consequence of submergence is toxicity to plants by an excess soluble iron when the soil is under anaerobic conditions. Currently, much attention has been given to the role of ethylene response transcription factors (ERFs) family, especially when plants respond to conditions of oxygen depletion. Considering such a scenario, we aimed to evaluate the transcriptional response of seven ERF genes in leaves of rice seedlings subjected to conditions of anoxia (N2), hypoxia (submergence), and iron overload (2,000 mg L−1 of FeSO4.7H2O). All the analyzed genes showed differential transcriptional expression in response to these three stresses. Analyses in the promoter region of these transcription factors indicated that the promoter region closest to the transcription start site is most responsible for the differential response of these genes under conditions of oxygen absence (anoxia) or reduction (hypoxia). On the other hand, the promoter relationship was not detected for iron stress. The methylation of these regions as a mean of regulation is also suggested as well as the possibility of redundancy of different genes expressed at similar times and stressful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP2/EREBP:

APETALA2/ethylene responsive element binding protein

Capes:

Coordination for the Improvement of Higher Education Personnel

cDNA:

Complementary DNA

CNPq:

National Counsel of Technological and Scientific Development

ERFs:

Ethylene response factors

FeSO4.7H2O:

Iron sulphate heptahydrate

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

MEME:

Multiple Motif for In Elicitation

MeV:

Multi Experiment Viewer

NCBI BLASTn:

The Basic Local Alignment Search Tool from the National Center for Biotechnology Information

N2 :

Gaseous nitrogen

Pfam:

Protein families

qPCR:

Quantitative PCR

RAP-DB:

The Rice Annotation Project Data Base

SK1 and SK2:

SNORKEL1 and SNORKEL1

TFBS:

Transcription factor binding sites

References

  • Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998) A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–5496

    Article  PubMed  CAS  Google Scholar 

  • Alpi A, Beevers H (1983) Effects of O2 concentration on rice seedlings. Plant Physiol 71:30–34

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish G, Miller G et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  PubMed  CAS  Google Scholar 

  • Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    Article  CAS  Google Scholar 

  • Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  PubMed  CAS  Google Scholar 

  • Buttner M, Singh KB (1997) Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc Natl Acad Sci U S A 94:5961–5966

    Article  PubMed  CAS  Google Scholar 

  • Catling D (1992) Rice in deepwater. The MacMillan Press Ltd., London

    Google Scholar 

  • Chang W-C, Lee T-Y, Huang H-D et al (2008) PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics 9:561–574

    Google Scholar 

  • Dugardeyn J, Van der Straeten D (2008) Ethylene: fine-tuning plant growth and development by stimulation and inhibition of elongation. Plant Sci 175:59–70

    Article  CAS  Google Scholar 

  • Elbeltag AS, Hall MA (1974) Effect of water stress upon endogenous ethylene levels in Vicia-faba. New Phytol 73:47–60

    Article  Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Ethylene—a key regulator of submergence responses in rice. Plant Sci 175:43–51

    Article  CAS  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427

    Article  PubMed  CAS  Google Scholar 

  • Goeschl JD, Rappaport L, Pratt HK (1966) Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress. Plant Physiol 41:877–884

    Article  PubMed  CAS  Google Scholar 

  • Gu YQ, Wildermuth MC, Chakravarthy S et al (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831

    Article  PubMed  CAS  Google Scholar 

  • Jeddeloh JA, Bender J, Richards EJ (1998) The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Dev 12:1714–1725

    Article  PubMed  CAS  Google Scholar 

  • Jung K-H, Seo Y-S, Walia H (2010) The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors. Plant Physiol 152:1674–1692

    Article  PubMed  CAS  Google Scholar 

  • Kawase M (1972) Effect of flooding on ethylene concentration in horticultural plants. J Am Soc Hortic Sci 97:584–588

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loreti E et al (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    Article  PubMed  CAS  Google Scholar 

  • Licausi F, van Dongen JT, Giuntoli B et al (2010) HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J 62:302–315

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM et al (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959

    Article  PubMed  CAS  Google Scholar 

  • Mei R, Hubbell E, Bekiranov S et al (2003) Probe selection for high-density oligonucleotide arrays. Proc Natl Acad Sci U S A 100:11237–11242

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T et al (2006) Genome wide analysis of the ERF gene family in arabidopsis and rice. Plant Physiol 140:411–432

    Article  PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA-binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    PubMed  CAS  Google Scholar 

  • Peng H, Zhang J (2009) Plant genomic DNA methylation in response to stresses: potential applications and challenges in plant breeding. Prog Nat Sci 19:1037–1045

    Article  CAS  Google Scholar 

  • Perata P, Alpi A (1993) Plant-responses to anaerobiosis. Plant Sci 93:1–17

    Article  CAS  Google Scholar 

  • Perata P, Voesenek LACJ (2007) Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci 12:43–46

    Article  PubMed  CAS  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY et al (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  PubMed  CAS  Google Scholar 

  • Saeed AI, Bhagabati NK, Braisted JC et al (2006) TM4 microarray software suite. Methods Enzymol 411:134–193

    Article  PubMed  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao QM et al (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Gene Dev 12:3703–3714

    Article  PubMed  CAS  Google Scholar 

  • Stam M, Viterbo A, Mol JNM et al (1998) Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttranscriptional silencing of homologous host genes in plants. Mol Cell Biol 18:6165–6177

    PubMed  CAS  Google Scholar 

  • Steffens B, Sauter M (2005) Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. Plant Physiol 139:713–721

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Fagard M (2001) Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet 17:29–35

    Article  PubMed  CAS  Google Scholar 

  • Voesenek LACJ, Bailey-Serres J (2009) Genetics of high-rise rice. Nature 460:959–960

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T et al (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi M, Peng XX (1995) Iron toxicity and stress-induced ethylene production in rice leaves. Plant Soil 173:21–28

    Article  CAS  Google Scholar 

  • Zhou JM, Tang XY, Martin GB (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J 16:3207–3218

    Article  PubMed  CAS  Google Scholar 

  • Zilberman D, Gehring M, Tran RK et al (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Laule O, Schmitz J et al (2008) Genevestigator transcriptome meta-analysis and biomarker search using rice and barley gene expression databases. Mol Plant 1:851–857

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement/Funding

This work was supported by the Brazilian Ministry of Science and Technology, National Counsel of Technological and Scientific Development (CNPq); Coordination for the Improvement of Higher Education Personnel (Capes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Costa de Oliveira.

Additional information

Communicated by: Paulo Arruda

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1003 kb)

ESM 2

(DOCX 36 kb)

ESM 3

(DOCX 26 kb)

ESM 4

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, R.S., Krüger, M.M., Pegoraro, C. et al. Transcriptional Regulation of Seven ERFs in Rice Under Oxygen Depletion and Iron Overload Stress. Tropical Plant Biol. 6, 16–25 (2013). https://doi.org/10.1007/s12042-013-9117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-013-9117-1

Keywords

Navigation