Skip to main content
Log in

α-Synuclein Oligomers: an Amyloid Pore?

Insights into Mechanisms of α-Synuclein Oligomer–Lipid Interactions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In many human diseases, oligomeric species of amyloid proteins may play a pivotal role in cytotoxicity. Many lines of evidence indicate that permeabilization of cellular membranes by amyloid oligomers may be the key factor in disrupting cellular homeostasis. However, the exact mechanisms by which the membrane integrity is impaired remain elusive. One prevailing hypothesis, the so-called amyloid pore hypothesis, assumes that annular oligomeric species embed into lipid bilayers forming transbilayer protein channels. Alternatively, an increased membrane permeability could be caused by thinning of the hydrophobic core of the lipid bilayer due to the incorporation of the oligomers between the tightly packed lipids, which would facilitate the transport of small molecules across the membrane. In this review, we briefly recapitulate our findings on the structure of α-synuclein oligomers and the factors influencing their interaction with lipid bilayers. Our results, combined with work from other groups, suggest that α-synuclein oligomers do not necessarily form pore-like structures. The emerging consensus is that local structural rearrangements of the protein lead to insertion of specific regions into the hydrophobic core of the lipid bilayer, thereby disrupting the lipid packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  2. Uversky VN (2010) Mysterious oligomerization of the amyloidogenic proteins. FEBS J 277(14):2940–2953

    Article  PubMed  CAS  Google Scholar 

  3. Schmit JD, Ghosh K, Dill K (2011) What drives amyloid molecules to assemble into oligomers and fibrils? Biophys J 100(2):450–458

    Article  PubMed  CAS  Google Scholar 

  4. Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Doeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-b(1–42) fibrils. Proc Natl Acad Sci U S A 102(48):17342–17347

    Article  PubMed  CAS  Google Scholar 

  5. Petkova AT, Leapman RD, Guo ZH, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307(5707):262–265

    Article  PubMed  CAS  Google Scholar 

  6. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280(17):17294–17300

    Article  PubMed  CAS  Google Scholar 

  7. Fink AL (2006) The aggregation and fibrillation of alpha-synuclein. Acc Chem Res 39(9):628–634

    Article  PubMed  CAS  Google Scholar 

  8. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489

    Article  PubMed  CAS  Google Scholar 

  9. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from A beta(1–42) are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453

    Article  PubMed  CAS  Google Scholar 

  10. Roher AE, Chaney MO, Kuo YM, Webster SD, Stine WB, Haverkamp LJ, Woods AS, Cotter RJ, Tuohy JM, Krafft GA, Bonnell BS, Emmerling MR (1996) Morphology and toxicity of A beta-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem 271(34):20631–20635

    Article  PubMed  CAS  Google Scholar 

  11. Volles MJ, Lansbury PT Jr (2003) Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry 42(26):7871–7878

    Article  PubMed  CAS  Google Scholar 

  12. Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27(34):9220–9232

    Article  PubMed  CAS  Google Scholar 

  13. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112

    Article  PubMed  CAS  Google Scholar 

  14. Goldberg MS, Lansbury PT (2000) Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2:E115–E119

    Article  PubMed  CAS  Google Scholar 

  15. Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT (2002) Neurodegenerative disease—amyloid pores from pathogenic mutations. Nature 418(6895):291–291

    Article  PubMed  CAS  Google Scholar 

  16. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  PubMed  CAS  Google Scholar 

  17. Ding TT, Lee SJ, Rochet JC, Lansbury PT Jr (2002) Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41(32):10209–10217

    Article  PubMed  CAS  Google Scholar 

  18. Bemporad F, Chiti F (2012) Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure–toxicity relationships. Chem Biol 19(3):315–327

    Article  PubMed  CAS  Google Scholar 

  19. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo demonstration that α-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108(10):4194–4199

    Article  PubMed  CAS  Google Scholar 

  20. Volles MJ, Lansbury PT Jr (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41(14):4595–4602

    Article  PubMed  CAS  Google Scholar 

  21. Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT Jr (2002) Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322(5):1089–1102

    Article  PubMed  CAS  Google Scholar 

  22. Quist A, Doudevski L, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102(30):10427–10432

    Article  PubMed  CAS  Google Scholar 

  23. Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, Hall J, Glabe C (2009) Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 284(7):4230–4237

    Article  PubMed  CAS  Google Scholar 

  24. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campionic S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108(10):4194–4199

    Article  PubMed  CAS  Google Scholar 

  25. Hogen T, Levin J, Schmidt F, Caruana M, Vassallo N, Kretzschmar H, Botzel K, Kamp F, Giese A (2012) Two different binding modes of alpha-synuclein to lipid vesicles depending on its aggregation state. Biophys J 102(7):1646–1655

    Article  PubMed  Google Scholar 

  26. Huels S, Hoegen T, Vassallo N, Danzer KM, Hengerer B, Giese A, Herms J (2011) AMPA-receptor-mediated excitatory synaptic transmission is enhanced by iron-induced alpha-synuclein oligomers. J Neurochem 117(5):868–878

    Article  CAS  Google Scholar 

  27. Julia Roberti M, Foelling J, Celej MS, Bossi M, Jovin TM, Jares-Erijman EA (2012) Imaging nanometer-sized alpha-synuclein aggregates by superresolution fluorescence localization microscopy. Biophys J 102(7):1598–1607

    Article  PubMed  Google Scholar 

  28. Kostka M, Högen T, Danzer KM, Levin J, Habeck M, Wirth A, Wagner R, Glabe CG, Finger S, Heinzelmann U, Garidel P, Duan W, Ross CA, Kretzschmar H, Giese A (2008) Single particle characterization of iron-induced pore-forming α-synuclein oligomers. J Biol Chem 283(16):10992–11003

    Article  PubMed  CAS  Google Scholar 

  29. Paleologou KE, Oueslati A, Shakked G, Rospigliosi CC, Kim H-Y, Lamberto GR, Fernandez CO, Schmid A, Chegini F, Gai WP, Chiappe D, Moniatte M, Schneider BL, Aebischer P, Eliezer D, Zweckstetter M, Masliah E, Lashuel HA (2010) Phosphorylation at S87 is enhanced in synucleinopathies, inhibits α-synuclein oligomerization, and influences synuclein–membrane interactions. J Neurosci 30(9):3184–3198

    Article  PubMed  CAS  Google Scholar 

  30. Rekas A, Knott RB, Sokolova A, Barnham KJ, Perez KA, Masters CL, Drew SC, Cappai R, Curtain CC, Pham CLL (2010) The structure of dopamine induced alpha-synuclein oligomers. Eur Biophys J 39(10):1407–1419

    Article  PubMed  CAS  Google Scholar 

  31. Zijlstra N, Blum C, Segers-Nolten IMJ, Claessens MMAE, Subramaniam V (2012) Molecular composition of sub-stoichiometrically labeled α-synuclein oligomers determined by single-molecule photobleaching. Angew Chem Int Ed 51 (35):8821–8824

    Google Scholar 

  32. Benilova I, Karran E, De Strooper B (2012) The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357

    Article  PubMed  CAS  Google Scholar 

  33. van Rooijen BD, Claessens MMAE, Subramaniam V (2008) Membrane binding of oligomeric alpha-synuclein depends on bilayer charge and packing. FEBS Lett 582(27):3788–3792

    Article  PubMed  Google Scholar 

  34. Cappai R, Leck SL, Tew DJ, Williamson NA, Smith DP, Galatis D, Sharples RA, Curtain CC, Ali FE, Cherny RA, Culvenor JG, Bottomley SP, Masters CL, Barnham KJ, Hill AF (2005) Dopamine promotes alpha-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J 19(10):1377–1379

    PubMed  CAS  Google Scholar 

  35. Nasstrom T, Fagerqvist T, Barbu M, Karlsson M, Nikolajeff F, Kasrayan A, Ekberg M, Lannfelt L, Ingelsson M, Bergstrom J (2011) The lipid peroxidation products 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote the formation of alpha-synuclein oligomers with distinct biochemical, morphological, and functional properties. Free Radical Biol Med 50(3):428–437

    Article  Google Scholar 

  36. Apetri MM, Maiti NC, Zagorski MG, Carey PR, Anderson VE (2006) Secondary structure of alpha-synuclein oligomers: characterization by Raman and atomic force microscopy. J Mol Biol 355(1):63–71

    Article  PubMed  CAS  Google Scholar 

  37. Rochet JC, Conway KA, Lansbury PT (2000) Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse alpha-synuclein. Biochemistry 39(35):10619–10626

    Article  PubMed  CAS  Google Scholar 

  38. Kaylor J, Bodner N, Edridge S, Yamin G, Hong DP, Fink AL (2005) Characterization of oligomeric intermediates in alpha-synuclein fibrillation: FRET studies of Y125W/Y133F/Y136F alpha-synuclein. J Mol Biol 353(2):357–372

    Article  PubMed  CAS  Google Scholar 

  39. Hong D-P, Fink AL, Uversky VN (2008) Structural characteristics of alpha-synuclein oligomers stabilized by the flavonoid Baicalein. J Mol Biol 383(1):214–223

    Article  PubMed  CAS  Google Scholar 

  40. H-y K, M-k C, Kumar A, Maier E, Siebenhaar C, Becker S, Fernandez CO, Lashuel HA, Benz R, Lange A, Zweckstetter M (2009) Structural properties of pore-forming oligomers of alpha-synuclein. J Am Chem Soc 131:17482–17489

    Article  Google Scholar 

  41. Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A 97(2):571–576

    Article  PubMed  CAS  Google Scholar 

  42. Conway KA, Lee SJ, Rochet JC, Ding TT, Harper JD, Williamson RE, Lansbury PT (2000) Accelerated oligomerization by Parkinson’s disease linked alpha-synuclein mutants. In: Growdon JH, Wurtman R. J., Corkin S., Nitsch R. M. (ed) Molecular Basis of Dementia, vol 920. Annals of the New York Academy of Sciences. pp 42–45

  43. Hoyer WG, Cherny D, Subramaniam V, Jovin TM (2004) Rapid self-assembly of alpha-synuclein observed by in situ atomic force microscopy. J Mol Biol 340(1):127–139

    Article  PubMed  CAS  Google Scholar 

  44. Shtilerman MD, Ding TT, Lansbury PT (2002) Molecular crowding accelerates fibrillization of alpha-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson’s disease? Biochemistry 41(12):3855–3860

    Article  PubMed  CAS  Google Scholar 

  45. Jo EJ, McLaurin J, Yip CM, St George-Hyslop P, Fraser PE (2000) alpha-synuclein membrane interactions and lipid specificity. J Biol Chem 275(44):34328–34334

    Article  PubMed  CAS  Google Scholar 

  46. Lee HJ, Choi C, Lee SJ (2002) Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 277(1):671–678

    Article  PubMed  CAS  Google Scholar 

  47. Munishkina LA, Phelan C, Uversky VN, Fink AL (2003) Conformational behavior and aggregation of alpha-synuclein in organic solvents: modeling the effects of membranes. Biochemistry 42(9):2720–2730

    Article  PubMed  CAS  Google Scholar 

  48. Lowe R, Pountney DL, Jensen PH, Gai WP, Voelcker NH (2004) Calcium(II) selectively induces alpha-synuclein annular oligomers via interaction with the C-terminal domain. Protein Sci 13(12):3245–3252

    Article  PubMed  CAS  Google Scholar 

  49. Kostka M, Hoegen T, Danzer KM, Levin J, Habeck M, Wirth A, Wagner R, Glabe CG, Finger S, Heinzelmann U, Garidel P, Duan W, Ross CA, Kretzschmar H, Giese A (2008) Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem 283(16):10992–11003

    Article  PubMed  CAS  Google Scholar 

  50. Giehm L, Svergun DI, Otzen DE, Vestergaard B (2011) Low-resolution structure of a vesicle disrupting alpha-synuclein oligomer that accumulates during fibrillation. Proc Natl Acad Sci U S A 108(8):3246–3251

    Article  PubMed  CAS  Google Scholar 

  51. van Rooijen BD, Claessens MMAE, Subramaniam V (2009) Lipid bilayer disruption by oligomeric alpha-synuclein depends on bilayer charge and accessibility of the hydrophobic core. Biochim Biophys Acta, Biomembr 1788(6):1271–1278

    Article  Google Scholar 

  52. van Rooijen BD, Claessens MMAE, Subramaniam V (2010) Membrane permeabilization by oligomeric alpha-synuclein: in search of the mechanism. PLoS One 5(12)

  53. van Rooijen BD (2009) Structural and functional insights into interactions of oligomeric α-synuclein with lipid membranes. PhD, University of Twente, Enschede

  54. van Rooijen BD, van Leijenhorst-Groener KA, Claessens MM, Subramaniam V (2009) Tryptophan fluorescence reveals structural features of alpha-synuclein oligomers. J Mol Biol 394(5):826–833

    Article  PubMed  Google Scholar 

  55. Dusa A, Kaylor J, Edridge S, Bodner N, Hong DP, Fink AL (2006) Characterization of oligomers during alpha-synuclein aggregation using intrinsic tryptophan fluorescence. Biochemistry 45(8):2752–2760

    Article  PubMed  CAS  Google Scholar 

  56. Stöckl M, Fischer P, Wanker E, Herrmann A (2008) Alpha-synuclein selectively binds to anionic phospholipids embedded in liquid-disordered domains. J Mol Biol 375(5):1394–1404

    Article  PubMed  Google Scholar 

  57. Stöckl M, Claessens MM, Subramaniam V (2012) Kinetic measurements give new insights into lipid membrane permeabilization by alpha-synuclein oligomers. Mol Biosyst 8(1):338–345

    Article  PubMed  Google Scholar 

  58. Powell GL, Marsh D (1985) Polymorphic phase behavior of cardiolipin derivatives studied by phosphorus-31 NMR and X-ray diffraction. Biochemistry 24(12):2902–2908

    Article  PubMed  CAS  Google Scholar 

  59. Kooijman EE, Chupin V, Fuller NL, Kozlov MM, de Kruijff B, Burger KNJ, Rand PR (2005) Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry 44(6):2097–2102

    Article  PubMed  CAS  Google Scholar 

  60. Dickey A, Faller R (2008) Examining the contributions of lipid shape and headgroup charge on bilayer behavior. Biophys J 95(6):2636–2646

    Article  PubMed  CAS  Google Scholar 

  61. Robotta M, Hintze C, Schildknecht S, Zijlstra N, Jüngst C, Karreman C, Huber M, Leist M, Subramaniam V, Drescher M (2012) Locally resolved membrane binding affinity of the N-terminus of α-synuclein. Biochemistry 51(19):3960–3962

    Article  PubMed  CAS  Google Scholar 

  62. Comellas G, Lemkau LR, Zhou DH, George JM, Rienstra CM (2012) Structural intermediates during alpha-synuclein fibrillogenesis on phospholipid vesicles. J Am Chem Soc 134(11):5090–5099

    Article  PubMed  CAS  Google Scholar 

  63. Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, Hall JE, Glabe CG (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279(45):46363–46366

    Article  PubMed  CAS  Google Scholar 

  64. Sokolov Y, Kozak JA, Kayed R, Chanturiya A, Glabe C, Hall JE (2006) Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. J Gen Physiol 128(6):637–647

    Article  PubMed  CAS  Google Scholar 

  65. Stöckl M, van Rooijen BD, Claessens MMAE, Subramaniam V (2011) Structural and functional insights into α-synuclein–lipid interactions. In: Lipids and cellular membranes in amyloid diseases. Wiley-VCH Verlag, KGaA, Berlin pp 33–55

Download references

Acknowledgments

This work has been financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO) through the NWO-CW TOP program number 700.58.302 granted to VS. We further acknowledge support from the Stichting Internationaal Parkinson Fonds. MTS is supported by NanoNextNL and the Deutscher Akademischer Austauschdienst (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Subramaniam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stöckl, M.T., Zijlstra, N. & Subramaniam, V. α-Synuclein Oligomers: an Amyloid Pore?. Mol Neurobiol 47, 613–621 (2013). https://doi.org/10.1007/s12035-012-8331-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8331-4

Keywords

Navigation