Skip to main content
Log in

Structure and magnetic properties of Zr–Mn substituted strontium hexaferrite Sr(Zr,Mn) x Fe12−2x O19 nanoparticles synthesized by sol–gel auto-combustion method

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this research, nano-sized powders of Zr–Mn substituted strontium hexaferrite (Sr(Zr,Mn) x Fe12−2x O19 (x = 0, 2, 2.5, 3)) were synthesized by sol–gel auto-combustion route using subsequent heat treatment. The samples were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), Mössbauer spectroscopy and vibration sample magnetometer (VSM) techniques. XRD and Mössbauer spectroscopy results revealed formation of Sr(Zr,Mn) x Fe12−2x O19 accompanied with Mn δ Fe2−δ O4 lateral phase in the samples. Also, FTIR and XRD results demonstrated presence of SrO impurity phase. FESEM micrographs show particle size reduction and presence of two distinct powder morphologies with different brightness levels with Zr4+ and Mn2+ substitutions which approves existence of lateral phases in the substituted samples. TEM micrographs show nanometric particles with sizes smaller than 100 nm with high crystallinity. Mössbauer results showed that at low level of substitution, Zr4+ ions prefer to occupy both 4f1 and 2b however, at higher level of substitution, they prefer exclusively 4f1 site. While, Mn2+ ions distributed approximately equally between 12k and 2a sites. The presence of nonmagnetic Zr4+ cation leads to decrease in exchange interaction, especially at 12k and 2a sites. VSM results showed decrement of coercivity force ( i H c ) from 5593.60 to 3282.46 Oe and maximum magnetization from 62.60 to 46.15 emu g−1, respectively, by increment of Zr–Mn substitution values. Variations in maximum magnetization magnitude have been explained on the basis of occupation of the substituted cations at different iron sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. de Araújo J H, Soares J M, Ginani M F, Machado F L A and da Cunha J B M 2013 J. Magn. Magn. Mater. 343 203

    Article  Google Scholar 

  2. Wang Y, Li Q, Zhang C and Li B 2009 J. Magn. Magn. Mater. 321 3368

    Article  Google Scholar 

  3. Nga T T V, Duong N P, Loan T T and Hien T D 2014 J. Alloys Compd. 610 630

    Article  Google Scholar 

  4. Masoudpanah S M and Seyyed Ebrahimi S A 2013 J. Magn. Magn. Mater. 342 128

    Article  Google Scholar 

  5. Ghasemi A 2013 J. Magn. Magn. Mater. 330 163

    Article  Google Scholar 

  6. Ur Rashid A, Southern P, Darr J A, Awan S and Manzoor S 2013 J. Magn. Magn. Mater. 344 134

    Article  Google Scholar 

  7. Lee S W, An S Y, Shim I and Kim C S 2005 J. Magn. Magn. Mater. 290–291 231

    Article  Google Scholar 

  8. Kuo H M, Hsui T, Tuo Y S and Yuan C L 2012 J. Mater. Sci. 47 2264

    Article  Google Scholar 

  9. Iqbal M J, Ashiq M N, Gomez P H, Munoz J M and Cabrera C T 2010 J. Alloys Compd. 500 113

    Article  Google Scholar 

  10. Kumar N, Kumar A, Jha R, Dogra A, Pasricha R, Kotnala R K et al 2010, J. Supercond. Nov. Magn. 23 423

    Article  Google Scholar 

  11. Jacobo S E, Blesa M A, Domingo-Pascual C and Rodpigguez-Clemente R 1997 J. Mater. Sci. 32 1025

    Article  Google Scholar 

  12. Xia A, Zuo C, Chen L, Jin C and Lv Y 2013 J. Magn. Magn. Mater. 332 186

    Article  Google Scholar 

  13. Surig C, Hempel K A and Bonnenborg D 1994 J. IEEE Trans. Magn. 30 4092

    Article  Google Scholar 

  14. Alamolhoda S, Seyyed Ebrahimi S A and Badiei A 2006 Phys. Met. Metallography 102 S71

    Article  Google Scholar 

  15. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S and Muthamizhchelvan C 2012 J. Mater. Sci.: Mater. Electron. 23 1041

    Google Scholar 

  16. Sharbatia A, Choopanib S, Azarc A M and Senna M 2010 Solid State Commun. 150 2218

    Article  Google Scholar 

  17. Davoodi A and Hashemi B 2011 J. Alloys Compd. 509 5893

    Article  Google Scholar 

  18. Fang Q Q, Bao H W, Fang D M, Wang J Z and Li X G 2004 J. Magn. Magn. Mater. 278 122

    Article  Google Scholar 

  19. Iqbal M J, Ashiq M N, Gomez P H, Munoz J M and Cabrera C T 2010 J. Alloys Compd. 500 113

    Article  Google Scholar 

  20. Ghasemi A and Morisako A 2008 J. Alloys Compd. 456 485

    Article  Google Scholar 

  21. Rietveld H M 1969 J. Appl. Cryst. 2 65

    Article  Google Scholar 

  22. Sultana Rafiuddin S, Zain Khan M, Umar K, Ahmed A S and Shahadat M 2015 J. Mol. Struct. 1098 393

    Article  Google Scholar 

  23. Aslibeiki B and Kameli P 2015 J. Magn. Magn. Mater. 385 308

    Article  Google Scholar 

  24. de Oliveira Lima J R, Abdul Ghani Y, da Silva R B, Marcos F Batista C, Binib R A et al 2012, Appl. Catal. A Gen. 445–446 76

    Article  Google Scholar 

  25. Iqbal M J and Ashiq M N 2007 Scripta Mater. 56 145

    Article  Google Scholar 

  26. Mula S, Mondal K, Ghosh S and Pabi S K 2010 Mater. Sci. Eng. A 527 3757

    Article  Google Scholar 

  27. Rao P M, Rard G and Grandjea P 1979 Phys. Status Solidi 54 529

    Article  Google Scholar 

  28. Fu H, Zhai H R, Zhang Y C, Gu B X and Li Y J 1986 J. Magn. Magn. Mater. 54–57 905

    Article  Google Scholar 

  29. Collomb A, Lambert Andron B, Boucherle J X and Samaras D 1986 Phys. Status Solidi 96 385

    Article  Google Scholar 

  30. Rane M V, Bahadur D, Nigam A K and Srivastava C M 1999 J. Magn. Magn. Mater. 192 288

    Article  Google Scholar 

  31. Iqbal M J, Ashiq M N and Jndez-Gmezc P H 2010 J. Alloys Compd. 500 113

    Article  Google Scholar 

  32. Mathew D S and Juang R 2007 Chem. Eng. J. 129 51

    Article  Google Scholar 

  33. Zi Z F, Sun Y P, Zhu X B, Yang Z R, Dai J M and Song W H 2008 J. Magn. Magn. Mater. 320 2746

    Article  Google Scholar 

  34. Pullar R C 2012 Prog. Mater. Sci. 57 1191

    Article  Google Scholar 

  35. Evans B J, Grandjen F, Lilot A P, Vogel R H and Gerard A 1987 J. Magn. Magn. Mater. 67 123

    Article  Google Scholar 

  36. Li Z W, Ong C K, Yang Z, Wei F L, Zhou X Z, Zhao J H and Morrish A H 2000 Phys. Rev. B 62 6530

    Article  Google Scholar 

  37. Dionne G F 1970 J. Appl. Phys. 41 4874

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M MIRKAZEMI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ALAMOLHODA, S., MIRKAZEMI, S.M., GHIAMI, Z. et al. Structure and magnetic properties of Zr–Mn substituted strontium hexaferrite Sr(Zr,Mn) x Fe12−2x O19 nanoparticles synthesized by sol–gel auto-combustion method. Bull Mater Sci 39, 1311–1318 (2016). https://doi.org/10.1007/s12034-016-1262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1262-3

Keywords

Navigation