Skip to main content
Log in

Extra EF Hand Unit (DX) Mediated Stabilization and Calcium Independency of α-Amylase

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

It is the common feature of α-amylases that calcium ion is required for their structural integrity and thermal stability. All amylases have at least one Ca2+ per molecule; therefore amino acids involved in calcium binding are specific and conserved. In this study, sequence analysis revealed the presence of EF-hand-like motif in calcium-binding loop of Bacillus megaterium WHO (BMW)-amylase that was previously isolated from BMW. The EF-hand motif and its variants (EF-hand-like motif) are the most common calcium-binding motifs found in a large number of protein families. To investigate the effect of calcium ion on the thermal stability and activity of BMW-amylase, we used site-directed mutagenesis to replace histidine 58 with Asp (D), Ile (I), Tyr (Y), Phe (F), and Arg (R) at the seventh position of EF-hand-like motif. Upon the addition of an extra DX unit to the calcium-binding loop in H58D variant, thermal stability, catalytic activity, and chelating power of the enzyme improved due to higher affinity toward calcium. H58D variant demonstrated calcium independency compared to the wild type and other created mutants. Conformational changes in the presence and absence of Ca2+ were monitored using fluorescence technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BMW:

Bacillus megaterium WHO

EDTA:

Ethylene diamine tetra acetic acid

SDS-PAGE:

Sodium dodecyl sulfate-polyacryl amide gel electrophoresis

DNS:

Dinitrosalicylic acid

References

  1. Smith, R. J. (1995). Calcium and bacteria. Advances in Microbial Physiology, 37, 83–133.

    Article  CAS  Google Scholar 

  2. Vallee, B. L., Stein, E. A., Sumerwell, W. N., & Fischer, E. H. (1959). Metal content of alpha-amylases of various origins. Journal of Biological Chemistry, 234, 2901–2905.

    CAS  Google Scholar 

  3. Janecek, S., Svensson, B., & MacGregor, E. A. (2003). Relation between domain evolution, specificity, and taxonomy of the α-amylase family members containing a C-terminal starch-binding domain. European Journal of Biochemistry, 270, 635–645.

    Article  CAS  Google Scholar 

  4. Declerck, N., Machius, M., Joyet, P., Wiegand, G., Huber, R., & Gaillardin, C. (2003). Engineering the thermostability of Bacillus licheniformis α-amylase. Protein Engineering, 16, 287–293.

    Article  CAS  Google Scholar 

  5. Torrance, J. W., MacArthur, M. W., & Thornton, J. M. (2008). Evolution of binding sites for zinc and calcium ions playing structural roles. Proteins, 71, 813–830.

    Article  CAS  Google Scholar 

  6. Ghollasi, M., Khajeh, K., Naderi-Manesh, H., & Ghasemi, A. (2010). Engineering of a bacillus α-amylase with improved thermostability and calcium independency. Applied Biochemistry and Biotechnology, 162, 444–459.

    Article  CAS  Google Scholar 

  7. Spurway, T. D., Morland, C., Cooper, A., Sumner, I., Hazlewood, G. P., O’Donnell, A. G., et al. (1997). Calcium protects a mesophilic xylanase from proteinase inactivation and thermal unfolding. Journal of Biological Chemistry, 272, 17523–17530.

    Article  CAS  Google Scholar 

  8. Zhou, Y., Yang, W., Kirberger, M., Lee, H. W., Ayalasomayajula, G., & Yang, J. J. (2006). Prediction of EF-hand calcium-binding proteins and analysis of bacterial EF-hand proteins. Proteins, 65, 643–655.

    Article  CAS  Google Scholar 

  9. Liu, T., & Altman, R. B. (2009). Prediction of calcium-binding sites by combining loop-modeling with machine learning. BMC Structural Biology, 9, 72.

    Article  Google Scholar 

  10. Rigden, D. J., Woodhead, D. D., Wong, P. W., & Galperin, M. Y. (2011). New structural and functional contexts of the Dx[DN]xDG linear motif: Insights into evolution of calcium-binding proteins. PLoS One, 6(6), e21507.

    Article  CAS  Google Scholar 

  11. Rigden, D. J., & Galperin, M. Y. (2004). The DxDxDG motif for calcium binding: multiple structural contexts and implications for evolution. Journal of Molecular Biology, 343, 971–984.

    Article  CAS  Google Scholar 

  12. Fisher, C. L., & Pei, G. K. (1997). Modification of a PCR-based site-directed mutagenesis method. BioTechniques, 23(570–1), 574.

    Google Scholar 

  13. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). New York: Cold Spring Harbor.

    Google Scholar 

  14. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  15. Raser, K. J., Buroker-Kilgore, M., & Wang, K. K. (1996). Binding and aggregation of human mu-calpain by terbium ion. Biochimica et Biophysica Acta, 1292, 9–14.

    Article  Google Scholar 

  16. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  17. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  18. Krieg, P., Schuppler, M., Koesters, R., Mincheva, A., Lichter, P., & Marks, F. (1997). Repetin (Rptn), a new member of the “fused gene” subgroup within the S100 gene family encoding a murine epidermal differentiation protein. Genomics, 43, 339–348.

    Article  CAS  Google Scholar 

  19. Nordberg Karlsson, E., Labes, A., Turner, P., Fridjohnsson, O. H., Wennerberg, C., Pozzo, T., et al. (2008). Differences and similarities in enzymes from the neopullulanase subfamily isolated from thermophilic species. Biologia, 63, 1006–1014.

    Article  CAS  Google Scholar 

  20. Rigden, D. J., Jedrzejas, M. J., Moroz, O. V., & Galperin, M. Y. (2003). Structural diversity of calcium-binding proteins in bacteria: single handed EF-hands? Trends in Microbiology, 11, 295–297.

    Article  CAS  Google Scholar 

  21. Vyas, N. K., Vyas, M. N., & Quiocho, F. A. (1987). A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis. Nature, 327, 635–638.

    Article  CAS  Google Scholar 

  22. Tanaka, A., & Hoshino, E. (2002). Calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase determined by inactivation kinetics. Biochemical Journal, 15, 635–639.

    Article  Google Scholar 

  23. D’Amico, S., Gerday, C., & Feller, G. (2003). Temperature adaptation of proteins: Engineering mesophilic-like activity and stability in a cold-adapted alpha-amylase. Journal of Molecular Biology, 332(5), 981–988.

    Article  Google Scholar 

  24. Hsiu, J., Fischer, E. H., & Stein, E. A. (1964). Alpha amylase as calcium-metalloenzymes II. Calcium and the catalytic activity. Biochemistry, 3, 61–66.

    Article  CAS  Google Scholar 

  25. Yang, K. (2001). Prokaryotic calmodulins: Recent developments and evolutionary implications. Journal of Molecular Microbiology and Biotechnology, 3, 457–459.

    CAS  Google Scholar 

  26. Michalet, X., Weiss, S., & Jäger, M. (2006). Single-molecule fluorescence studies of protein folding and conformational dynamics. Chemical Reviews, 106, 1785–1813.

    Article  CAS  Google Scholar 

  27. Royer, C. A. (2006). Probing protein folding and conformational transitions with fluorescence. Chemical Reviews, 106, 1769–1784.

    Article  CAS  Google Scholar 

  28. Babor, M., Greenblatt, H. M., Edelman, M., & Sobolev, V. (2005). Flexibility of metal binding sites in proteins on a database scale. Proteins, 59, 221–230.

    Article  CAS  Google Scholar 

  29. Fitter, J. (2005). Structural and dynamical features contributing to thermostability in alpha-amylases. Cellular and Molecular Life Sciences, 62, 1925–1937.

    Article  CAS  Google Scholar 

  30. Danson, M. J., Hough, D. W., Russell, R. J., Taylor, G. L., & Pearl, L. (1996). Enzyme thermostability and thermoactivity. Protein Engineering, 9, 629–630.

    Article  CAS  Google Scholar 

  31. Lin, L. L., Huang, C. C., & Lo, H. F. (2008). Engineering of a truncated alpha-amylase of Bacillus sp. TS-23 for the simultaneous improvement of thermal and oxidative stabilities, and mutational analysis of the proposed calcium-binding aspartates. Process Biochemistry, 43, 559–565.

    Article  CAS  Google Scholar 

  32. Liu, Y., Shen, W., Shi, G. Y., & Wang, Z. X. (2010). Role of the calcium-binding residues Asp231, Asp233, and Asp438 in alpha-amylase of Bacillus amyloliquefaciens as revealed by mutational analysis. Current Microbiology, 60(3), 162–166.

    Article  CAS  Google Scholar 

  33. Gether, U., Lin, S., Ghanouni, P., Ballesteros, J. A., Weinstein, H., & Kobilka, B. K. (1997). Agonists induce conformational changes in transmembrane domains III and VI of the adrenoceptor. EMBO Journal, 16, 6737–6747.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khosro Khajeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghi, L., Khajeh, K., Mollania, N. et al. Extra EF Hand Unit (DX) Mediated Stabilization and Calcium Independency of α-Amylase. Mol Biotechnol 53, 270–277 (2013). https://doi.org/10.1007/s12033-012-9523-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9523-x

Keywords

Navigation