Skip to main content
Log in

Molecular Analysis of Drought Tolerance in Tea by cDNA-AFLP Based Transcript Profiling

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A cDNA-AFLP approach was used to identify transcript and/or genes specifically expressed in response to drought in tea. Drought was artificially induced and whole genome transcript profiling was done at three different stages—6 days before wilting, 3 days before wilting and at wilting stage of both tolerant and susceptible cultivars, and genetic differences was thus visualized as polymorphisms in the transcriptome. The cDNA-AFLP technique allowed genes and transcripts to be identified in the tolerant genotype (TV-23) whose expression is responsive to drought stress. The cluster analysis revealed two types of clustering—type I separated the tolerant and susceptible cultivar, whereas type II separated the time point of sample and this may be grouped as early and late responsive transcripts. 108 transcript derived fragments were identified as differentially expressed in tolerant genotypes of which 89 sequences could be obtained. Fifty-nine of them showed homology in the public databases. Functional ontology showed genes related to carbohydrate metabolism, response to stress, protein modification process and translation. Cluster I includes five fragments and cluster II includes 25 fragments. Other genes strongly expressed in response to drought in tolerant genotype would help us in identifying and determining the genetic basis of mechanisms involved in conferring drought tolerance in tea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barua, D. N. (1989). Science and practice in tea culture (p. 509). Calcutta: Tea Research Association.

    Google Scholar 

  2. Jain, N. K. (1999). Global advances in tea science (p. 882). New Delhi: Aravali Books International.

    Google Scholar 

  3. Upadhaya, H., & Panda, S. K. (2004). Responses of Camellia sinensis to drought and rehydration. Biologia Plantarum, 48(4), 597–600.

    Article  Google Scholar 

  4. Zhang, J., & Kirkham, M. B. (1994). Drought stress induced changes in activities of superoxide dismutase, catalase and peroxide in wheat species. Plant and Cell Physiology, 35, 785–791.

    CAS  Google Scholar 

  5. Alscher, R. G., Donahue, J. L., & Cramer, C. (1997). Reactive oxygen species and antioxidants: Relationships in green cells. Physiologia Plantarum, 100, 224–233.

    Article  CAS  Google Scholar 

  6. Sharma, P., & Kumar, S. (2005). Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L.) O. Kunze]. Journal of Biosciences, 30(2), 231–235.

    Article  CAS  Google Scholar 

  7. Gabriels, S. H., Takken, F. L., Vossen, J. H., Jong, C. F., Liu, Q., Turk, S. C., et al. (2006). cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Molecular Plant-Microbe Interactions, 19, 567–576.

    Article  CAS  Google Scholar 

  8. Guo, J., Jiang, R. H., Kamphuis, L. G., & Govers, F. A. (2006). cDNA-AFLP based strategy to identify transcripts associated with avirulence in Phytophthora infestans. Fungal Genetics and Biology, 43, 111–123.

    Article  CAS  Google Scholar 

  9. Mao, C., Yi, K., Yang, L., Zheng, B., Wu, Y., Liu, F., et al. (2004). Identification of aluminum-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): Aluminium-regulated genes for the metabolism of cell wall components. Journal of Experimental Botany, 55, 137–143.

    Article  CAS  Google Scholar 

  10. Vandeput, F., Zabeau, M., & Maenhaut, C. (2005). Identification of differentially expressed genes in thyrotropin stimulated dog thyroid cells by the cDNA-AFLP technique. Molecular and Cellular Endocrinology, 243, 58–65.

    Article  CAS  Google Scholar 

  11. Vuylsteke, M., Daele, H., Vercauteren, A., Zabeau, M., & Kuiper, M. (2006). Genetic dissection of transcriptional regulation by cDNA-AFLP. The Plant Journal, 45, 439–446.

    Article  CAS  Google Scholar 

  12. Brugmans, B., del Fernandez, C. A., Bachem, C. W., van Os, H., van Eck, H. J., & Visser, R. G. (2002). A novel method for the construction of genome wide transcriptome maps. The Plant Journal, 31, 211–222.

    Article  CAS  Google Scholar 

  13. Ritter, E., de Galarreta Ruiz, J. I., Eck, H. J., & Sanchez, I. (2008). Construction of a potato transcriptome map based on cDNA AFLP technique. Theoretical and Applied Genetics, 116, 1003–1013.

    Article  CAS  Google Scholar 

  14. Durrant, W. E., Rowland, O., Piedras, P., & Hammond, J. D. G. (2000). cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. The Plant Cell, 12, 963–977.

    CAS  Google Scholar 

  15. Suarez, M. C., Bernal, A., Gutiérrez, J., Tohme, J., & Fregene, M. (2000). Developing expressed sequence tags (ESTs) from polymorphic transcript-derived fragments (TDFs) in cassava (Manihot esculenta Crantz). Genome, 43, 62–67.

    CAS  Google Scholar 

  16. Reijans, M., Lascaris, R., Groeneger, A. O., Wittenberg, A., Wesselink, E., van Oeveren, J., et al. (2003). Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. Genomics, 82, 606–618.

    Article  CAS  Google Scholar 

  17. Liang, P., & Pardee, A. B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 257, 967–971.

    Article  CAS  Google Scholar 

  18. Volkmuth, W., Turk, S., Shapiro, A., Fang, Y., Kiegle, E., van Haaren, M., et al. (2003). Technical advances: Genome-wide cDNA-AFLP analysis of the Arabidopsis transcriptome. OMICS: A Journal of Integrative Biology, 7, 143–159.

    Article  CAS  Google Scholar 

  19. Annual Report. (2006) Tea Research Association, Jorhat, pp. 23–27.

  20. Fusco, N., Micheletto, L., Corso, G. D., Borgato, L., & Furin, A. (2005). Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. Journal of Experimental Botany, 56(421), 3017–3027.

    Article  CAS  Google Scholar 

  21. Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy—The principles and practice of numerical classification. San Francisco: W. H. Freeman.

    Google Scholar 

  22. Rohlf, F. J. (1998) NTSYS-pc. Numerical taxonomy and multivariate analysis system. Version 2.02e. Exeter Software, Setauket, New York.

  23. Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nueda, M. J., Robles, M., et al. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36(10), 3420–3435.

    Article  Google Scholar 

  24. Cavallari, C. F. B., Severino, F. E., Maluf, M. P., & Maia, I. G. (2009). Identification of suitable internal control genes for expression studies in coffea arabica under different experimental conditions. BMC Molecular Biology, 10, 1.

    Article  Google Scholar 

  25. Donson, J., Fang, Y., Espiritu-Santo, G., Xing, W., Salazar, A., Miyamoto, S., et al. (2002). Comprehensive gene expression analysis by transcript profiling. Plant Molecular Biology, 48, 75–97.

    Article  CAS  Google Scholar 

  26. Burger, A. L., & Botha, F. C. (2004). Clonning of specific ripening related gene from the multiple of Ripening-related genes identified from a single band excised from a cDNA AFLP gel. Plant Molecular Biology Reporter, 22, 225–236.

    Article  CAS  Google Scholar 

  27. Mohd, N., Anju, B., & Dhananjay, S. (2006). Immunogenicity and protective efficacy of DnaJ (hsp40) of Streptococcus pneumoniae against lethal infection in mice. Vaccine, 24, 6225–6231.

    Article  Google Scholar 

  28. Zhichang, Z., Wanrong, Z., Jinping, Y., Jianjun, Z., Xufeng, Z. L. L., & Yang, Y. (2010). Over-expression of Arabidopsis DnaJ (Hsp40) contributes to NaCl-stress tolerance. African Journal of Biotechnology, 9(7), 972–978.

    Google Scholar 

  29. Snedden, W. A., & Fromm, H. (2001). Calmodulin as a versatile calcium signal transducer in plants. New Phytologist, 15, 35–66.

    Article  Google Scholar 

  30. Bouche, N., Scharlat, A., Snedden, W., Bouchez, D., & Fromm, H. (2002). A novel family of calmodulin-binding transcription activators in multicellular organisms. Journal of Biological Chemistry, 277, 21851–21861.

    Article  CAS  Google Scholar 

  31. Takahashi, S., Katagiri, T., Hirayama, T., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2001). Hyperosmotic stress induces a rapid and transient increase in Inositol1, 4,5-triphosphate independent of abscisic acid in Arabidopsis cell cultures. Plant and Cell Physiology, 42, 214–222.

    Article  CAS  Google Scholar 

  32. Bray, E. (2002). Classification of genes differentially expressed during water deficit stress in Arabidopsis thaliana: An analysis using microarray and differential expression data. Annals of Botany, 89, 803–811.

    Article  CAS  Google Scholar 

  33. Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, 459, 1071–1078.

    Article  CAS  Google Scholar 

  34. Schwechheimer, C., & Willige, B. C. (2009). Shedding light on gibberellic acid signalling. Current Opinion in Plant Biology, 12, 57–62.

    Article  CAS  Google Scholar 

  35. Nishizawa, A., Yabuta, Y., & Shigeoka, S. (2008). Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiology, 147, 1251–1263.

    Article  CAS  Google Scholar 

  36. Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., et al. (2002). Important role of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal, 29, 417–426.

    Article  CAS  Google Scholar 

  37. Pattanagul, W., & Madore, M. A. (1999). Water deficit effects on raffinose family oligosachharide metabolism in Coleus. Plant Physiology, 121, 987–993.

    Article  CAS  Google Scholar 

  38. Hincha, D. K., Zuther, E., & Heyer, A. G. (2003). The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions. Biochimica et Biophysica Acta, 1612, 172–177.

    Article  CAS  Google Scholar 

  39. Santarius, K. A. (1973). The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance. Planta, 113, 105–114.

    Article  CAS  Google Scholar 

  40. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell, 15, 63–78.

    Article  CAS  Google Scholar 

  41. Cominelli, E., Galbiati, M., Vavasseur, A., Conti, L., Sala, T., Vuylsteke, M., et al. (2005). A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Current Biology, 15, 1196–1200.

    Article  CAS  Google Scholar 

  42. Liang, Y. K., Dubos, C., Dodd, I. C., Holroyd, G. H., Hetherington, A. M., & Campbell, M. M. (2005). AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Current Biology, 15, 1201–1206.

    Article  CAS  Google Scholar 

  43. Mattana, M., Biazzi, E., Consonni, R., Locatelli, F., Vannini, C., Provera, S., et al. (2005). Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. Physiologia Plantarum, 125, 212–223.

    Article  CAS  Google Scholar 

  44. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., et al. (2001). Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell, 13, 889–905.

    CAS  Google Scholar 

  45. Santos, C., & Rey, P. (2006). Plant thioredoxins are key actors in the oxidative stress response. Trends in Plant Science, 11(7), 329–334.

    Article  Google Scholar 

  46. Pastore, D., Trono, D., Laus, M. N., Fonzo, N. D., & Flagella, Z. (2007). Possible plant mitochondria involvement in cell adaptation to drought stress: A case study: Durum wheat mitochondria. Journal of Experimental Botany, 58(2), 195–210.

    Article  CAS  Google Scholar 

  47. Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1996). A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. The Plant Cell, 8, 1323–1335.

    CAS  Google Scholar 

  48. Bray, E. A., Bailey-Serres, J., & Weretilnyk, E. (2000). Responses to abiotic stresses. In W. Gruissem, B. Buchannan, & R. Jones (Eds.), Biochemistry and molecular biology of plants (pp. 1158–1249). Derwood, MD: American Society of Plant Physiologists.

    Google Scholar 

  49. Kawaguchi, R., Girke, T., Bray, E. A., & Bailey-Serres, J. (2004). Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. The Plant Journal, 38, 823–839.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by generous funding from Department of Biotechnology, Govt. of India. The authors acknowledge Dr. Mridul Hazarika, Director, TRA for constant encouragement, support and for the facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudripta Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Bharalee, R., Bhorali, P. et al. Molecular Analysis of Drought Tolerance in Tea by cDNA-AFLP Based Transcript Profiling. Mol Biotechnol 53, 237–248 (2013). https://doi.org/10.1007/s12033-012-9517-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9517-8

Keywords

Navigation