Skip to main content

Advertisement

Log in

Characterization of the Thermoregulatory Response to Pituitary Adenylate Cyclase-Activating Polypeptide in Rodents

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Administration of the long form (38 amino acids) of pituitary adenylate cyclase-activating polypeptide (PACAP38) into the central nervous system causes hyperthermia, suggesting that PACAP38 plays a role in the regulation of deep body temperature (T b). In this study, we investigated the thermoregulatory role of PACAP38 in details. First, we infused PACAP38 intracerebroventricularly to rats and measured their T b and autonomic thermoeffector responses. We found that central PACAP38 infusion caused dose-dependent hyperthermia, which was brought about by increased thermogenesis and tail skin vasoconstriction. Compared to intracerebroventricular administration, systemic (intravenous) infusion of the same dose of PACAP38 caused significantly smaller hyperthermia, indicating a central site of action. We then investigated the thermoregulatory phenotype of mice lacking the Pacap gene (Pacap −/−). Freely moving Pacap −/− mice had higher locomotor activity throughout the day and elevated deep T b during the light phase. When the Pacap −/− mice were loosely restrained, their metabolic rate and T b were lower compared to their wild-type littermates. We conclude that PACAP38 causes hyperthermia via activation of the autonomic cold-defense thermoeffectors through central targets. Pacap −/− mice express hyperkinesis, which is presumably a compensatory mechanism, because under restrained conditions, these mice are hypometabolic and hypothermic compared to controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Absood A, Chen D, Wang ZY, Hakanson R (1992) Vascular effects of pituitary adenylate cyclase activating peptide: a comparison with vasoactive intestinal peptide. Regul Pept 40:323–329

    Article  PubMed  CAS  Google Scholar 

  • Adams BA, Gray SL, Isaac ER, Bianco AC, Vidal-Puig AJ, Sherwood NM (2008) Feeding and metabolism in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology 149:1571–1580

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Almeida MC, Hew-Butler T, Soriano RN et al (2012) Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J Neurosci 32:2086–2099

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aschoff J, von Saint-Paul U (1973) Brain temperature as related to gross motor activity in the unanesthetized chicken. Physiol Behav 10:529–533

    Article  PubMed  CAS  Google Scholar 

  • Balasko M, Garami A, Soos S, Koncsecsko-Gaspar M, Szekely M, Petervari E (2010) Central alpha-MSH, energy balance, thermal balance, and antipyresis. J Therm Biol 35:211–217

    Article  CAS  Google Scholar 

  • Banki E, Degrell P, Kiss P et al (2013) Effect of PACAP treatment on kidney morphology and cytokine expression in rat diabetic nephropathy. Peptides 42:125–130

    Article  PubMed  CAS  Google Scholar 

  • Banki E, Kovacs K, Nagy D et al (2014) Molecular mechanisms underlying the nephroprotective effects of PACAP in diabetes. J Mol Neurosci (in press)

  • Banks WA, Kastin AJ, Komaki G, Arimura A (1993) Passage of pituitary adenylate cyclase activating polypeptide1-27 and pituitary adenylate cyclase activating polypeptide1-38 across the blood–brain barrier. J Pharmacol Exp Ther 267:690–696

    PubMed  CAS  Google Scholar 

  • Brown D, Livesey G, Dauncey MJ (1991) Influence of mild cold on the components of 24 hour thermogenesis in rats. J Physiol 441:137–154

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brown D, Tamas A, Reglodi D, Tizabi Y (2013) PACAP protects against salsolinol-induced toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson’s disease. J Mol Neurosci 50:600–607

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brown D, Tamas A, Reglodi D, Tizabi Y. (2014) PACAP protects against inflammatory-mediated toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson’s disease. Neurotox Res (in press)

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  • Cummings KJ, Willie C, Wilson RJ (2008) Pituitary adenylate cyclase-activating polypeptide maintains neonatal breathing but not metabolism during mild reductions in ambient temperature. Am J Physiol Regul Integr Comp Physiol 294:R956–R965

    Article  PubMed  CAS  Google Scholar 

  • Danyadi B, Szabadfi K, Reglodi D et al (2014) PACAP application improves functional outcome of chronic retinal ischemic injury in rats-evidence from electroretinographic measurements. J Mol Neurosci (in press)

  • Das M, Vihlen CS, Legradi G (2007) Hypothalamic and brainstem sources of pituitary adenylate cyclase-activating polypeptide nerve fibers innervating the hypothalamic paraventricular nucleus in the rat. J Comp Neurol 500:761–776

    Article  PubMed Central  PubMed  Google Scholar 

  • de Oliveira C, Garami A, Lehto SG et al (2014) Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents. J Neurosci 34:4445–4452

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Garami A, Shimansky YP, Pakai E, Oliveira DL, Gavva NR, Romanovsky AA (2010) Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia. J Neurosci 30:1435–1440

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Garami A, Pakai E, Oliveira DL et al (2011) Thermoregulatory phenotype of the Trpv1 knockout mouse: thermoeffector dysbalance with hyperkinesis. J Neurosci 31:1721–1733

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gasz B, Racz B, Roth E et al (2006) Pituitary adenylate cyclase activating polypeptide protects cardiomyocytes against oxidative stress-induced apoptosis. Peptides 27:87–94

    Article  PubMed  CAS  Google Scholar 

  • Gaszner B, Kormos V, Kozicz T, Hashimoto H, Reglodi D, Helyes Z (2012) The behavioral phenotype of pituitary adenylate-cyclase activating polypeptide-deficient mice in anxiety and depression tests is accompanied by blunted c-Fos expression in the bed nucleus of the stria terminalis, central projecting Edinger-Westphal nucleus, ventral lateral septum, and dorsal raphe nucleus. Neuroscience 202:283–299

    Article  PubMed  CAS  Google Scholar 

  • Gray SL, Yamaguchi N, Vencova P, Sherwood NM (2002) Temperature-sensitive phenotype in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology 143:3946–3954

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto H, Shintani N, Tanaka K et al (2001) Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci U S A 98:13355–13360

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hashimoto H, Hashimoto R, Shintani N et al (2009) Depression-like behavior in the forced swimming test in PACAP-deficient mice: amelioration by the atypical antipsychotic risperidone. J Neurochem 110:595–602

    Article  PubMed  CAS  Google Scholar 

  • Hawke Z, Ivanov TR, Bechtold DA, Dhillon H, Lowell BB, Luckman SM (2009) PACAP neurons in the hypothalamic ventromedial nucleus are targets of central leptin signaling. J Neurosci 29:14828–14835

    Article  PubMed  CAS  Google Scholar 

  • Helyes Z, Pozsgai G, Borzsei R et al (2007) Inhibitory effect of PACAP-38 on acute neurogenic and non-neurogenic inflammatory processes in the rat. Peptides 28:1847–1855

    Article  PubMed  CAS  Google Scholar 

  • Imai-Matsumura K, Matsumura K, Tsai CL, Nakayama T (1988) Thermal responses of ventromedial hypothalamic neurons in vivo and in vitro. Brain Res 445:193–197

    Article  PubMed  CAS  Google Scholar 

  • Inglott MA, Farnham MM, Pilowsky PM (2011) Intrathecal PACAP-38 causes prolonged widespread sympathoexcitation via a spinally mediated mechanism and increases in basal metabolic rate in anesthetized rat. Am J Physiol Heart Circ Physiol 300:H2300–H2307

    Article  PubMed  CAS  Google Scholar 

  • Joo KM, Chung YH, Kim MK et al (2004) Distribution of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors (VPAC1, VPAC2, and PAC1 receptor) in the rat brain. J Comp Neurol 476:388–413

    Article  PubMed  CAS  Google Scholar 

  • Kanizsai P, Garami A, Solymar M, Szolcsanyi J, Szelenyi Z (2009) Energetics of fasting heterothermia in TRPV1-KO and wild type mice. Physiol Behav 96:149–154

    Article  PubMed  CAS  Google Scholar 

  • Kemeny A, Reglodi D, Cseharovszky R et al (2010) Pituitary adenylate cyclase-activating polypeptide deficiency enhances oxazolone-induced allergic contact dermatitis in mice. J Mol Neurosci 42:443–449

    Article  PubMed  CAS  Google Scholar 

  • Koves K, Kantor O, Lakatos A, et al (2014) Advent and recent advances in research on the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the regulation of gonadotropic hormone secretion of female rats. J Mol Neurosci (in press)

  • Lenti L, Domoki F, Kis D et al (2007) Pituitary adenylate cyclase-activating polypeptide induces pial arteriolar vasodilation through cyclooxygenase-dependent and independent mechanisms in newborn pigs. Brain Res 1165:81–88

    Article  PubMed  CAS  Google Scholar 

  • Maasz G, Pirger Z, Reglodi D et al (2014) Comparative protein composition of the brains of PACAP-deficient mice using mass spectrometry-based proteomic analysis. J Mol Neurosci (in press)

  • Miampamba M, Germano PM, Arli S et al (2002) Expression of pituitary adenylate cyclase-activating polypeptide and PACAP type 1 receptor in the rat gastric and colonic myenteric neurons. Regul Pept 105:145–154

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Arimura A, Dahl RR et al (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Jiang L, Dahl RD et al (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170:643–648

    Article  PubMed  CAS  Google Scholar 

  • Mount LE, Willmott JV (1967) The relation between spontaneous activity, metabolic rate and the 24 hour cycle in mice at different environmental temperatures. J Physiol 190:371–380

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mulder H, Jongsma H, Zhang Y, Gebre-Medhin S, Sundler F, Danielsen N (1999) Pituitary adenylate cyclase-activating polypeptide and islet amyloid polypeptide in primary sensory neurons: functional implications from plasticity in expression on nerve injury and inflammation. Mol Neurobiol 19:229–253

    Article  PubMed  CAS  Google Scholar 

  • Nagy AD, Csernus VJ (2007) The role of PACAP in the control of circadian expression of clock genes in the chicken pineal gland. Peptides 28:1767–1774

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Morrison SF (2008a) Preoptic mechanism for cold-defensive responses to skin cooling. J Physiol 586:2611–2620

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nakamura K, Morrison SF (2008b) A thermosensory pathway that controls body temperature. Nat Neurosci 11:62–71

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Njaine B, Rocha-Martins M, Vieira-Vieira CH et al (2014) Pleiotropic functions of pituitary adenylyl cyclase-activating polypeptide on retinal ontogenesis: involvement of KLF4 in the control of progenitor cell proliferation. J Mol Neurosci (in press)

  • Nonaka N, Banks WA, Mizushima H, Shioda S, Morley JE (2002) Regional differences in PACAP transport across the blood–brain barrier in mice: a possible influence of strain, amyloid beta protein, and age. Peptides 23:2197–2202

    Article  PubMed  CAS  Google Scholar 

  • Nowak JZ, Kuba K (2002) Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide-stimulated cyclic AMP synthesis in rat cerebral cortical slices: interaction with noradrenaline, adrenaline, and forskolin. J Mol Neurosci 18:47–52

    Article  PubMed  CAS  Google Scholar 

  • Osaka T (2004) Cold-induced thermogenesis mediated by GABA in the preoptic area of anesthetized rats. Am J Physiol Regul Integr Comp Physiol 287:R306–R313

    Article  PubMed  CAS  Google Scholar 

  • Palkovits M, Somogyvari-Vigh A, Arimura A (1995) Concentrations of pituitary adenylate cyclase activating polypeptide (PACAP) in human brain nuclei. Brain Res 699:116–120

    Article  PubMed  CAS  Google Scholar 

  • Pataki I, Adamik A, Jaszberenyi M, Macsai M, Telegdy G (2000) Pituitary adenylate cyclase-activating polypeptide induces hyperthermia in the rat. Neuropharmacology 39:1303–1308

    Article  PubMed  CAS  Google Scholar 

  • Pataki I, Adamik A, Jaszberenyi M, Macsai M, Telegdy G (2003) Involvement of transmitters in pituitary adenylate cyclase-activating polypeptide-induced hyperthermia. Regul Pept 115:187–193

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2004) The mouse brain in stereotaxic coordinates, Second Edition (ed). Academic Press, San Diego, CA

  • Petervari E, Garami A, Pakai E, Szekely M (2005) Effects of perineural capsaicin treatment of the abdominal vagus on endotoxin fever and on a non-febrile thermoregulatory event. J Endotoxin Res 11:260–266

    Article  PubMed  CAS  Google Scholar 

  • Petervari E, Balasko M, Garami A, Soos S, Szekely M (2009) Suppression of food intake by intracerebroventricular injection of alpha-MSH varies with age in rats. Acta Physiol Hung 96:483–487

    Article  PubMed  CAS  Google Scholar 

  • Petervari E, Garami A, Soos S, Szekely M, Balasko M (2010) Age-dependence of alpha-MSH-induced anorexia. Neuropeptides 44:315–322

    Article  PubMed  CAS  Google Scholar 

  • Racz B, Horvath G, Faluhelyi N et al (2008) Effects of PACAP on the circadian changes of signaling pathways in chicken pinealocytes. J Mol Neurosci 36:220–226

    Article  PubMed  CAS  Google Scholar 

  • Reglodi D, Somogyvari-Vigh A, Vigh S, Kozicz T, Arimura A (2000) Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke 31:1411–1417

    Article  PubMed  CAS  Google Scholar 

  • Resch JM, Boisvert JP, Hourigan AE, Mueller CR, Yi SS, Choi S (2011) Stimulation of the hypothalamic ventromedial nuclei by pituitary adenylate cyclase-activating polypeptide induces hypophagia and thermogenesis. Am J Physiol Regul Integr Comp Physiol 301:R1625–R1634

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Resch JM, Maunze B, Gerhardt AK, Magnuson SK, Phillips KA, Choi S (2013) Intrahypothalamic pituitary adenylate cyclase-activating polypeptide regulates energy balance via site-specific actions on feeding and metabolism. Am J Physiol Endocrinol Metab 305:E1452–E1463

    Article  PubMed  CAS  Google Scholar 

  • Romanovsky AA (2007a) Temperature regulation. Chapter 23. In: Petersen O (ed) Lecture notes on human physiology, 5th edn. Blackwell, Oxford, pp 603–615

    Google Scholar 

  • Romanovsky AA (2007b) Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 292:R37–R46

    Article  PubMed  CAS  Google Scholar 

  • Romanovsky AA (2014) Skin temperature: its role in thermoregulation. Acta Physiol 210:498–507

    Article  CAS  Google Scholar 

  • Romanovsky AA, Ivanov AI, Shimansky YP (2002) Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. J Appl Physiol 92:2667–2679

    PubMed  Google Scholar 

  • Romanovsky AA, Almeida MC, Garami A et al (2009) The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev 61:228–261

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rozzi S.J, Borelli G, Ryan K, et al (2014) PACAP27 is protective against Tat-induced neurotoxicity. J Mol Neurosci (in press)

  • Ryabinin AE, Wang YM, Finn DA (1999) Different levels of Fos immunoreactivity after repeated handling and injection stress in two inbred strains of mice. Pharmacol Biochem Behav 63:143–151

    Article  PubMed  CAS  Google Scholar 

  • Sagar SM, Sharp FR, Curran T (1988) Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240:1328–1331

    Article  PubMed  CAS  Google Scholar 

  • Seeliger S, Buddenkotte J, Schmidt-Choudhury A et al (2010) Pituitary adenylate cyclase activating polypeptide: an important vascular regulator in human skin in vivo. Am J Pathol 177:2563–2575

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Szentirmai E, Kapas L, Sun Y, Smith RG, Krueger JM (2010) Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice. Am J Physiol Regul Integr Comp Physiol 298:R467–R477

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tachibana T, Oikawa D, Adachi N, Boswell T, Furuse M (2007) Central administration of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide differentially regulates energy metabolism in chicks. Comp Biochem Physiol A Mol Integr Physiol 147:156–164

    Article  PubMed  CAS  Google Scholar 

  • Thornhill J, Jugnauth A, Halvorson I (1994) Brown adipose tissue thermogenesis evoked by medial preoptic stimulation is mediated via the ventromedial hypothalamic nucleus. Can J Physiol Pharmacol 72:1042–1048

    Article  PubMed  CAS  Google Scholar 

  • Tsueshita T, Gandhi S, Onyuksel H, Rubinstein I (2002) Phospholipids modulate the biophysical properties and vasoactivity of PACAP-(1–38). J Appl Physiol 93:1377–1383

    PubMed  CAS  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M, Fournier A, Vaudry H (1999) Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. Proc Natl Acad Sci U S A 96:9415–9420

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52:269–324

    PubMed  CAS  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357

    Article  PubMed  CAS  Google Scholar 

  • Weinert D, Waterhouse J (1998) Diurnally changing effects of locomotor activity on body temperature in laboratory mice. Physiol Behav 63:837–843

    Article  PubMed  CAS  Google Scholar 

  • Weinert D, Waterhouse J (1999) Daily activity and body temperature rhythms do not change simultaneously with age in laboratory mice. Physiol Behav 66:605–612

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm I, Fazakas C, Tamas A, Toth G, Reglodi D, Krizbai IA (2014) PACAP enhances barrier properties of cerebral microvessels. J Mol Neurosci (in press)

Download references

Acknowledgments

This research has been supported by the Hungarian Scientific Research Fund (grants PD 105532, PD 100706, and K 104984), the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences (BO/00785/12/5), the TAMOP (grants 4.2.2.A-11/1/KONV-2012-0024 and 4.2.4.A/2-11-1-2012-0001), the Arimura Foundation, the PTE-MTA “Lendulet” Program, and the Hungarian Brain Research Program (grant KTIA_13_NAP-A-III/5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Garami.

Additional information

Eszter Banki and Eszter Pakai contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banki, E., Pakai, E., Gaszner, B. et al. Characterization of the Thermoregulatory Response to Pituitary Adenylate Cyclase-Activating Polypeptide in Rodents. J Mol Neurosci 54, 543–554 (2014). https://doi.org/10.1007/s12031-014-0361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0361-0

Keywords

Navigation